
LION ONE REPORTS NEW HIGH-GRADE GOLD RESULTS AT TUVATU

North Vancouver, B.C., April 25, 2023 - Lion One Metals Limited (TSX-V: LIO) (OTCQX: LOMLF) (ASX: LLO) ("Lion One" or the "Company") reports significant new high-grade results from grade control drilling at the Company's 100% owned Tuvatu Alkaline Gold Project in Fiji.

Following on the initial mining and extraction of the URA1 lode, the Company is here reporting new high-grade results from grade control drilling on the URW1 lode system, approximately 120m further east. Mining of URW1 is expected to begin over the next 2-4 weeks. Strike drive development on URW1 has commenced.

Highlights of new high-grade gold mineralization intersected by grade control drilling:

- Multiple bonanza grade zones have been intersected including:
 - o 88.07g/t Au over 5.7m (including 1,396g/t Au over 0.3m) (TGC-0034)
 - o 27.52g/t Au over 5.55m (TUG-056)
 - o 20.93g/t Au over 7.2m (TGC-0003)
 - o 16.12g/t Au over 9.3m (TGC-0014)
 - o 16.48g/t Au over 9.6m (TGC-0002)
 - **14.6g/t Au over 6.6m** (TGC-0032)
 - **14.97g/t Au over 5.4m** (TGC-0018)
 - o **10.85g/t Au over 6.9m** (TGC-0013)
- Visible was gold observed in several drill holes.

Figure 1. Plan map showing the locations of the URA1 and URW1 lodes (in red) relative to the main Tuvatu decline. The gray outlines indicate planned development to reach the URW1 lodes.

Close spaced grade control drilling has resulted in much higher resolution of the lode arrays as compared to previous infill drilling, including the identification of bonanza grade (>50g/t Au) zones.

The tightened drill pattern will facilitate optimised development and extraction of high-grade gold mineralization from the URW1 lodes while minimizing dilution. High-grade gold mineralization extracted from the URW1 lode system will contribute significantly to the growing high-grade stockpile constituting the initial feed for the Company's plant and processing facility, on schedule for start-up in Q4 2023.

Mineralization

Mineralization consists of abundant free gold, typically in association with light to dark gray chalcedonic quartz and roscoelite, locally accompanied by minor amounts of pyrite, sphalerite, galena and lesser chalcopyrite (Figure 3).

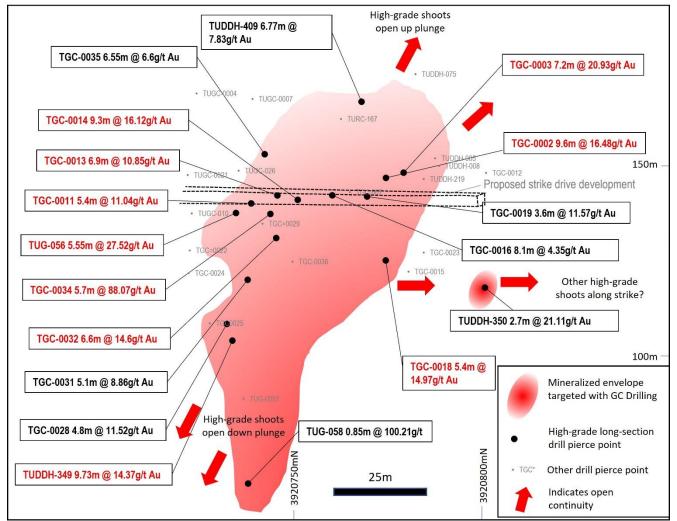
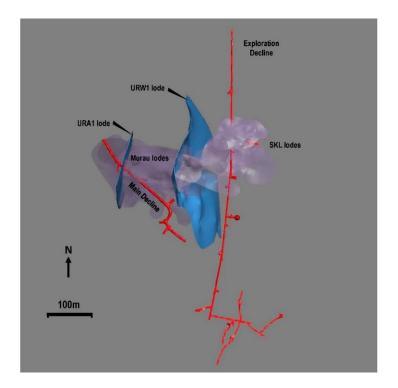


Figure 2. Long section view west of grade control drilling at URW1. Intersections >5m and 10g/t Au highlighted in red.

Figure 3. A) Coarse disseminated gold in a quartz-roscoelite veinlet, TGC-0034 67.5m. Sample returned 1396.3 g/t Au over 0.3m. B) Coarse gold in gray quartz veinlet, TGC-0034 81.6m. Sample returned 166.2 g/t Au over 0.9m. C) Coarse honey sphalerite rimmed by dark pyrite in variable light to dark gray quartz vein, TGC-0032 71.0m. Sample returned 112.9 g/t Au over 0.3m. D) Banded chalcedonic quartz-roscoelite-pyrite-fine native gold, TGC-0002 77.4m. Sample returned 44.3 g/t Au over 0.3m.



URW1 Lode System

The URW1 lode system consists of narrow, high-grade to locally bonanza-grade vein arrays and vein swarms that strike approximately N-S and dip sub-vertically to steeply east and is located approximately 120m east of the URA1 lode (Figure 1, 2, 4).

As currently modelled based on earlier drilling, the URW1 lode measures approximately 300m in the NS-direction by approximately 300m of vertical extent, thus forming one of the major N-S trending lodes that have been recognized in this part of the Tuvatu deposit. The URW1 lode intersects with numerous flat-lying to moderately south-dipping EW veins referred to as the Murau lode system (Figure 4).

Grade control drilling has been conducted from both the new decline and the historic exploration adit (Figures 1 & 2). This drilling is targeting a 60m strike section of the URW1 system, within the >300m strike of the overall URW1 system. Detailed drilling of this nature is the first conducted at the project and has served to confirm both the location of structures and the extent of some of the higher-grade zones within the overall mineralized envelope. These bonanza zones (>50g/t Au * true width) have been intersected that show a considerably higher-grade than the previous wide-spaced resource drilling in the area. The high-grade zones are interpreted to relate to the intersection of the N-S URW1 lode with E-W striking structures such as the Murau lodes.

Figure 4. Plan view of 3D models illustrating the earlier interpretation of the URA1 and URW1 lodes (blue). The lighter pink shapes are the flat-lying stacked Murau lodes (left) and SKL lodes (right). Underground development is shown in red.

The URW1 lode system is interpreted as a series of parallel vein arrays.

This interpretation has come by way of a series of closely spaced grade control drill holes, drilled from two separate locations, east-directed drilling from the main decline, as well as west-directed drilling from the exploration decline (Figure 1). To date, a total of 34 diamond drill holes totalling approximately 3,538m have

been completed resulting in 5m to 10m spacing between adjacent holes covering a limited extent of the URW1 lode system. Despite the relatively limited size of the area drilled thus far, the grade control program has significantly increased the level of confidence in the geometry, widths, and grade distribution of the URW1 lodes, thereby allowing for detailed development planning.

Composited assay results for mineralized intervals interpreted as URW1 lodes in holes completed to date are presented in Table 1, with Tables 2 and 3 in the appendix containing full drill hole details. The URW1 lode system represents the next main area of mining and extraction of high-grade mineralization at Tuvatu. Development has commenced with first grade control and mapping expected shortly.

Table 1. Summary of composited drill results intersecting mineralization from the area of URW1 in this release.(TGC = new grade control drilling ordered by strongest intersections; TUDDH and TUG indicates previousexploration drilling (surface and underground) targeting this zone). For full results refer Table 2 in theappendix.

Hole ID	Grade (g/t Au)	Drill intersection width (m)	True Width (m)
TGC-0034	88.07	5.7	5.1
TUG-056	27.52	5.55	5.5
TGC-0003	20.93	7.2	6.5
TGC-0014	16.12	9.3	8.4
TGC-0002	16.48	9.6	8.2
TUG-058	100.21	0.85	0.85
TGC-0032	14.6	6.6	5.3
TGC-0018	14.97	5.4	4.9
TGC-0013	10.85	6.9	6.2
TGC-0011	11.04	5.4	4.6
TGC-0035	6.6	6.55	6.2
TGC-0019	11.57	3.6	3.4
TGC-0028	11.52	4.8	3.4
TGC-0031	8.86	5.1	4.1
TUDDH-350	21.11	2.7	1.7
TUDDH-349	14.37	9.73	2.4
TGC-0016	4.35	8.1	7.7
TUDDH-409	7.83	6.77	4.1
TGC-0005	10.14	3	2.4
TUDDH-219	8.33	14.15	2.9
TGC-0008	10.29	3	2.3
TUG-057	17.7	1.2	1.1
TURC-167	8.88	3	1.8
TGC-0009	4.58	3.6	3.2
TGC-0017	2.22	6.9	6.2
TGC-0036	5.16	3	2.3

		Drill	
Hole ID	Grade (g/t Au)	intersection width (m)	True Width (m)
TGC-0025	5.04	3	2.3
TGC-0029	1.6	3.3	2.6
TGC-0030	3.22	1.5	1.2
TGC-0015	2.39	1.8	1.4
TUDDH-225	0.73	0.9	0.9
TUG-123	0.32	0.95	0.8
TUDDH-075	0.84	0.35	0.25
TUG-125	0.2	0.54	0.3

About Tuvatu

The Tuvatu Alkaline Gold Project is located on the island of Viti Levu in Fiji. The January 2018 mineral resource for Tuvatu as disclosed in the technical report "Technical Report and Preliminary Economic Assessment for the Tuvatu Gold Project, Republic of Fiji", dated September 25, 2020, and prepared by Mining Associates Pty Ltd of Brisbane Qld, comprises 1,007,000 tonnes indicated at 8.50 g/t Au (274,600 oz. Au) and 1,325,000 tonnes inferred at 9.0 g/t Au (384,000 oz. Au) at a cut-off grade of 3.0 g/t Au. The technical report is available on the Lion One website at <u>www.liononemetals.com</u> and on the SEDAR website at <u>www.sedar.com</u>.

Qualified Person

In accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43- 101"), Sergio Cattalani, P.Geo, Senior Vice President Exploration, is the Qualified Person for the Company and has reviewed and is responsible for the technical and scientific content of this news release.

QAQC Procedures

Lion One adheres to rigorous QAQC procedures above and beyond basic regulatory guidelines in conducting its sampling, drilling, testing, and analyses. The Company utilizes its own fleet of diamond drill rigs, using PQ, HQ and NQ sized drill core rods. Drill core is logged and split by Lion One personnel on site. Samples are delivered to and analyzed at the Company's geochemical and metallurgical laboratory in Fiji. Duplicates of all samples with grades above 0.5 g/t Au are both re-assayed at Lion One's lab and delivered to ALS Global Laboratories in Australia (ALS) for check assay determinations. All samples for all high-grade intercepts are sent to ALS for check assays. All samples are pulverized to 85% passing through 75 microns. Gold analysis is carried out using fire assay with an AA finish. Samples that have returned grades greater than 10.00 g/t Au are then re-analyzed by gravimetric method. For samples that return greater than 0.50 g/t Au, repeat fire assay runs are carried out and repeated until a result is obtained that is within 10% of the original fire assay run. Lion One's laboratory can also assay for a range of 71 other elements through Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), but currently focuses on a suite of 9 important pathfinder elements. All duplicate anomalous samples are sent to ALS labs in Townsville QLD and are analyzed by the same methods (Au-AA26, and Au-GRA22 where applicable). ALS also analyses 33 pathfinder elements by HF-HNO3-HCIO4 acid digestion, HCI leach and ICP-AES (method ME-ICP61).

About Lion One Metals Limited

Lion One's flagship asset is 100% owned, fully permitted high grade Tuvatu Alkaline Gold Project, located on the island of Viti Levu in Fiji. Lion One envisions a low-cost high-grade underground gold mining operation at Tuvatu

coupled with exciting exploration upside inside its tenements covering the entire Navilawa Caldera, an underexplored yet highly prospective 7km diameter alkaline gold system. Lion One's CEO Walter Berukoff leads an experienced team of explorers and mine builders and has owned or operated over 20 mines in 7 countries. As the founder and former CEO of Miramar Mines, Northern Orion, and La Mancha Resources, Walter is credited with building over \$3 billion of value for shareholders.

On behalf of the Board of Directors of Lion One Metals Limited "Walter Berukoff", Chairman and CEO

Contact Investor Relations Toll Free (North America) Tel: 1-855-805-1250 Email: <u>info@liononemetals.com</u> Website: www.liononemetals.com

Neither the TSX Venture Exchange nor its Regulation Service Provider accepts responsibility for the adequacy or accuracy of this release

This press release may contain statements that may be deemed to be "forward-looking statements" within the meaning of applicable Canadian securities legislation. All statements, other than statements of historical fact, included herein are forwardlooking information. Generally, forward-looking information may be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "proposed", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases, or by the use of words or phrases which state that certain actions, events or results may, could, would, or might occur or be achieved. This forward-looking information reflects Lion One Metals Limited's current beliefs and is based on information currently available to Lion One Metals Limited and on assumptions Lion One Metals Limited believes are reasonable. These assumptions include, but are not limited to, the actual results of exploration projects being equivalent to or better than estimated results in technical reports, assessment reports, and other geological reports or prior exploration results. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of Lion One Metals Limited or its subsidiaries to be materially different from those expressed or implied by such forward-looking information. Such risks and other factors may include, but are not limited to: the stage development of Lion One Metals Limited, general business, economic, competitive, political and social uncertainties; the actual results of current research and development or operational activities; competition; uncertainty as to patent applications and intellectual property rights; product liability and lack of insurance; delay or failure to receive board or regulatory approvals; changes in legislation, including environmental legislation, affecting mining, timing and availability of external financing on acceptable terms; not realizing on the potential benefits of technology; conclusions of economic evaluations; and lack of qualified, skilled labour or loss of key individuals. Although Lion One Metals Limited has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking information, there may be other factors that cause results not to be as anticipated, estimated or intended. Accordingly, readers should not place undue reliance on forward-looking information. Lion One Metals Limited does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

Appendix 1: full drill results and drill details

Table 2. Composited results from grade control drillholes targeting the URW1 lodes

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0001	33.0	33.9	0.9	0.64
TGC-0002	77.1	77.4	0.3	44.25

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0002		80.1	84.9	4.8	8.03
TGC-0002	including	80.1	82.2	2.1	11.60
TGC-0002	which includes	81.6	81.9	0.3	72.20
TGC-0002	and including	83.1	84.9	1.8	7.86
TGC-0002		89.4	97.5	8.1	13.07
TGC-0002	including	89.4	91.2	1.8	4.68
TGC-0002	including	92.1	97.5	5.4	17.97
TGC-0002	which includes	93.6	93.9	0.3	41.54
TGC-0002	and	93.9	94.2	0.3	45.40
TGC-0002	and	94.2	94.5	0.3	74.38
TGC-0002	and	94.5	94.8	0.3	38.43
TGC-0002	and	94.8	95.1	0.3	56.89
TGC-0002		100.2	103.8	3.6	7.93
TGC-0002		108.3	111.9	3.6	10.09
TGC-0002	including	108.3	109.2	0.9	4.05
TGC-0002	including	110.1	111.9	1.8	18.15
TGC-0002	which includes	111.0	111.3	0.3	77.72
TGC-0002		113.7	114.6	0.9	17.11
TGC-0003		52.5	53.4	0.9	2.79
TGC-0003		77.4	80.4	3.0	3.84
TGC-0003	including	77.4	77.7	0.3	5.34
TGC-0003	and	78.6	78.9	0.3	4.40
TGC-0003	and	79.2	79.5	0.3	27.18
TGC-0003		89.7	95.7	6.0	9.57
TGC-0003	including	89.7	93.3	3.6	14.63
TGC-0003	which includes	90.6	91.2	0.6	81.18
TGC-0003		98.0	99.2	1.2	0.95
TGC-0003		102.2	110.6	8.4	5.73
TGC-0003	including	102.2	107.0	4.8	7.97
TGC-0003	which includes	105.8	106.1	0.3	35.58
TGC-0003	and includes	107.3	108.5	1.2	6.84
TGC-0003		112.4	112.7	0.3	1.15
TGC-0003		115.1	116.0	0.9	59.85
TGC-0004		3.4	4.3	0.9	2.93
TGC-0005		75.3	75.9	0.6	2.11
TGC-0005		91.5	99.0	7.5	2.77
TGC-0005	including	93.3	94.2	0.9	10.67
TGC-0005		102.6	102.9	0.3	2.10
TGC-0005		104.1	104.7	0.6	21.01
TGC-0005		107.1	108.0	0.9	1.65
TGC-0005		109.8	110.4	0.6	0.78
TGC-0005		120.0	122.1	2.1	2.51

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0005	including	121.8	122.1	0.3	14.83
TGC-0007		28.2	28.5	0.3	1.31
TGC-0008		74.8	76.9	2.1	10.51
TGC-0008		82.3	82.9	0.6	25.57
TGC-0008		94.0	94.3	0.3	4.20
TGC-0008		96.4	101.2	4.8	3.77
TGC-0008	including	96.4	98.5	2.1	3.73
TGC-0008	and	99.1	101.2	2.1	4.78
TGC-0008		105.1	105.7	0.6	2.78
TGC-0008		108.7	109.3	0.6	1.05
TGC-0008		110.8	111.4	0.6	2.16
TGC-0008		122.5	123.1	0.6	61.39
TGC-0009		18.6	21.3	2.7	0.91
TGC-0009		28.5	29.1	0.6	1.61
TGC-0009		30.9	31.5	0.6	8.33
TGC-0009		32.7	34.2	1.5	33.38
TGC-0009		49.5	49.8	0.3	10.54
TGC-0009		53.4	56.4	3.0	1.07
TGC-0009		61.2	61.5	0.3	1.97
TGC-0009		65.4	65.7	0.3	3.06
TGC-0009		66.9	67.8	0.9	6.10
TGC-0009		69.0	75.0	6.0	5.01
TGC-0009	including	69.6	70.2	0.6	4.66
TGC-0009	and	70.5	72.3	1.8	6.62
TGC-0009	and	72.9	73.5	0.6	6.80
TGC-0009	and	73.8	75.0	1.2	8.78
TGC-0009		76.5	78.0	1.5	0.97
TGC-0010		17.1	18.9	1.8	6.52
TGC-0010	including	17.1	17.4	0.3	37.04
TGC-0010		20.1	21.0	0.9	2.54
TGC-0010		23.4	30.3	6.9	2.67
TGC-0010	including	24.9	27.6	2.7	4.71
TGC-0010		36.0	36.9	0.9	8.92
TGC-0011		19.0	19.3	0.3	0.89
TGC-0011		22.3	23.8	1.5	7.56
TGC-0011		27.1	29.3	2.2	2.49
TGC-0011	including	27.1	28.0	0.9	5.34
TGC-0011		31.1	31.4	0.3	1.26
TGC-0011		32.6	35.3	2.7	7.64
TGC-0011	including	32.6	34.1	1.5	11.33
TGC-0011	and	34.4	35.3	0.9	4.04
TGC-0011		40.4	40.7	0.3	1.22

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0011		52.7	53.3	0.6	1.91
TGC-0011		54.8	56.9	2.1	2.18
TGC-0011		58.7	59.9	1.2	2.62
TGC-0011	including	59.3	59.9	0.6	4.09
TGC-0011		63.2	66.5	3.3	2.68
TGC-0011	including	64.1	66.5	2.4	3.58
TGC-0011		68.6	75.8	7.2	6.72
TGC-0011	including	68.6	69.2	0.6	19.95
TGC-0011	which includes	68.9	69.2	0.3	37.28
TGC-0011	and	69.5	73.4	3.9	8.84
TGC-0011	which includes	71.0	71.3	0.3	59.70
TGC-0012		79.5	81.9	2.4	7.86
TGC-0012	including	79.5	79.8	0.3	59.46
TGC-0012		85.2	85.5	0.3	2.79
TGC-0012		87.3	88.5	1.2	5.11
TGC-0012		92.1	92.4	0.3	2.47
TGC-0012		98.4	99.6	1.2	1.32
TGC-0012		102.3	104.1	1.8	0.63
TGC-0012		105.9	106.2	0.3	4.67
TGC-0013		19.2	19.5	0.3	1.55
TGC-0013		23.1	23.7	0.6	1.28
TGC-0013		32.4	34.5	2.1	3.36
TGC-0013	including	32.4	33.0	0.6	6.97
TGC-0013	and	33.9	34.5	0.6	4.67
TGC-0013		42.9	43.5	0.6	1.16
TGC-0013		47.1	47.7	0.6	0.80
TGC-0013		50.4	51.3	0.9	13.58
TGC-0013		55.6	56.2	0.6	1.37
TGC-0013		67.6	70.3	2.7	5.70
TGC-0013		72.7	73.6	0.9	4.09
TGC-0013		75.1	79.3	4.2	11.03
TGC-0013	including	75.1	76.6	1.5	4.86
TGC-0013	and	77.2	78.1	0.9	8.51
TGC-0013	and	78.4	79.3	0.9	34.87
TGC-0013	which includes	78.7	79.3	0.6	49.52
TGC-0013		81.1	83.8	2.7	5.97
TGC-0013		94.3	97.6	3.3	1.21
TGC-0014		10.8	11.1	0.3	1.21
TGC-0014		19.2	19.5	0.3	1.03
TGC-0014		34.5	36.3	1.8	2.47
TGC-0014	including	34.5	35.4	0.9	3.38
TGC-0014	and	36.0	36.3	0.3	4.72

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0014		42.6	42.9	0.3	3.21
TGC-0014		52.2	53.1	0.9	0.57
TGC-0014		56.1	56.4	0.3	1.69
TGC-0014		66.0	75.6	9.6	13.28
TGC-0014	including	66.0	66.9	0.9	54.81
TGC-0014	which includes	66.3	66.6	0.3	95.47
TGC-0014	and	66.6	66.9	0.3	67.96
TGC-0014	and	67.5	69.0	1.5	7.83
TGC-0014	and	69.3	72.6	3.3	9.89
TGC-0014	and	72.9	73.2	0.3	3.32
TGC-0014	and	74.1	75.0	0.9	32.29
TGC-0014	which includes	74.4	74.7	0.3	57.95
TGC-0014	and	74.7	75.0	0.3	38.34
TGC-0014	and	75.3	75.6	0.3	9.41
TGC-0014		80.7	84.6	3.9	7.69
TGC-0014		85.8	88.8	3.0	1.86
TGC-0014		92.4	95.1	2.7	1.10
TGC-0015		71.1	71.4	0.3	0.54
TGC-0015		87.3	87.9	0.6	2.17
TGC-0015		105.6	106.2	0.6	2.50
TGC-0016		38.7	43.5	4.8	6.22
TGC-0016	including	38.7	41.4	2.7	9.67
TGC-0016	which includes	40.8	41.1	0.3	45.75
TGC-0016		68.1	68.7	0.6	2.16
TGC-0016		70.8	71.4	0.6	2.55
TGC-0016		72.6	73.5	0.9	6.50
TGC-0016		81.0	83.4	2.4	14.23
TGC-0016	including	81.0	81.6	0.6	19.42
TGC-0016	and	81.9	83.4	1.5	14.99
TGC-0016	which includes	83.1	83.4	0.3	45.51
TGC-0016		84.6	85.5	0.9	1.86
TGC-0016		92.4	94.5	2.1	4.83
TGC-0016		95.7	97.8	2.1	3.58
TGC-0017		5.1	5.7	0.6	1.28
TGC-0017		17.4	17.7	0.3	4.32
TGC-0017		36.0	36.6	0.6	1.26
TGC-0017		38.7	44.1	5.4	9.39
TGC-0017		69.3	69.9	0.6	9.60
TGC-0017		72.3	73.8	1.5	3.03
TGC-0017	including	73.2	73.8	0.6	7.01
TGC-0017		76.8	77.4	0.6	65.63
TGC-0017		82.5	84.0	1.5	3.08

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0018		78.9	79.5	0.6	0.92
TGC-0018		85.8	86.1	0.3	11.42
TGC-0018		88.5	90.6	2.1	5.67
TGC-0018		94.2	95.1	0.9	0.54
TGC-0018		96.3	97.2	0.9	0.63
TGC-0018		102.0	105.9	3.9	15.62
TGC-0018		109.2	111.0	1.8	2.74
TGC-0019		10.8	12.0	1.2	0.86
TGC-0019		13.8	16.5	2.7	2.31
TGC-0019		31.2	32.7	1.5	3.21
TGC-0019		40.2	45.0	4.8	16.05
TGC-0019	including	41.4	45.0	3.6	21.18
TGC-0019	which includes	42.6	42.9	0.3	49.70
TGC-0019	and	43.2	43.5	0.3	166.81
TGC-0019		51.0	52.2	1.2	2.60
TGC-0019		65.1	66.3	1.2	0.85
TGC-0019		70.5	79.8	9.3	4.92
TGC-0019	including	70.5	75.0	4.5	6.70
TGC-0019	and	75.3	76.5	1.2	7.69
TGC-0019		83.7	84.0	0.3	15.22
TGC-0019		95.7	96.9	1.2	9.13
TGC-0020		16.8	18.3	1.5	3.09
TGC-0020		24.3	26.4	2.1	0.92
TGC-0020		28.2	29.7	1.5	4.10
TGC-0021		4.4	5.0	0.6	1.40
TGC-0021		24.5	26.9	2.4	2.86
TGC-0021	including	24.5	25.4	0.9	6.34
TGC-0021		44.3	44.9	0.6	1.36
TGC-0021		74.0	74.3	0.3	0.65
TGC-0022		28.2	29.4	1.2	1.36
TGC-0022		54.6	54.9	0.3	1.04
TGC-0022		57.9	58.8	0.9	1.22
TGC-0022		66.9	70.5	3.6	2.31
TGC-0022		75.0	75.6	0.6	2.23
TGC-0023		90.2	90.8	0.6	1.71
TGC-0023		100.7	101.3	0.6	0.63
TGC-0024		13.8	14.4	0.6	0.50
TGC-0024		58.8	59.7	0.9	1.30
TGC-0024		65.4	65.7	0.3	0.54
TGC-0025		7.5	9.3	1.8	2.79
TGC-0025	including	7.5	8.4	0.9	5.22
TGC-0025		13.5	14.1	0.6	4.33

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0025		15.6	16.5	0.9	0.68
TGC-0025		78.6	83.1	4.5	3.76
TGC-0025	including	78.6	79.2	0.6	4.69
TGC-0025	and	79.5	80.7	1.2	3.07
TGC-0025	and	81.0	83.1	2.1	4.91
TGC-0025		84.6	84.9	0.3	1.77
TGC-0025		87.0	87.3	0.3	6.55
TGC-0026		14.7	15.3	0.6	0.58
TGC-0026		28.8	29.7	0.9	2.28
TGC-0026		33.9	34.8	0.9	5.94
TGC-0026		39.9	40.8	0.9	10.20
TGC-0026		42.3	42.9	0.6	3.72
TGC-0026		71.7	72.0	0.3	0.65
TGC-0027		70.2	70.8	0.6	2.41
TGC-0027		80.7	82.2	1.5	3.75
TGC-0027		87.9	88.5	0.6	1.72
TGC-0027		93.6	94.2	0.6	2.46
TGC-0027		96.6	99.0	2.4	0.79
TGC-0027		104.4	105.9	1.5	4.98
TGC-0027		107.7	109.8	2.1	1.99
TGC-0027	including	109.5	109.8	0.3	11.28
TGC-0027		112.8	114.0	1.2	0.63
TGC-0028		8.7	9.6	0.9	1.02
TGC-0028		13.2	16.2	3.0	11.27
TGC-0028		78.0	78.9	0.9	0.63
TGC-0028		83.4	83.7	0.3	1.17
TGC-0028		85.2	85.8	0.6	0.55
TGC-0028		92.1	97.5	5.4	10.86
TGC-0028	including	92.1	93.6	1.5	26.67
TGC-0028	which includes	92.1	92.4	0.3	45.29
TGC-0028	and	92.4	92.7	0.3	72.80
TGC-0028	and	94.5	95.7	1.2	12.97
TGC-0028	and	96.6	97.5	0.9	3.44
TGC-0028		101.1	102.6	1.5	9.53
TGC-0029		14.7	16.2	1.5	10.82
TGC-0029		74.4	75.0	0.6	4.93
TGC-0029		83.7	86.7	3.0	1.00
TGC-0029		95.7	96.9	1.2	3.14
TGC-0030		18.0	19.2	1.2	56.88
TGC-0030		22.8	25.2	2.4	4.87
TGC-0030	including	24.0	25.2	1.2	9.62
TGC-0030		51.9	52.2	0.3	1.47

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0030		54.6	54.9	0.3	3.60
TGC-0030		61.2	61.5	0.3	3.75
TGC-0030		71.4	72.0	0.6	20.01
TGC-0030		83.1	84.6	1.5	3.65
TGC-0030		88.8	92.4	3.6	0.97
TGC-0030		94.2	95.4	1.2	1.40
TGC-0031		13.5	20.4	6.9	6.60
TGC-0031	including	13.5	15.3	1.8	17.28
TGC-0031	which includes	14.1	14.7	0.6	34.62
TGC-0031	and	15.6	18.3	2.7	4.76
TGC-0031	and	19.2	19.5	0.3	3.25
TGC-0031		62.0	63.8	1.8	3.21
TGC-0031	including	62.9	63.8	0.9	5.88
TGC-0031		72.5	73.4	0.9	1.27
TGC-0031		74.9	75.8	0.9	6.93
TGC-0031		77.0	77.6	0.6	3.30
TGC-0031		82.4	85.1	2.7	3.12
TGC-0031		86.9	95.6	8.7	13.73
TGC-0031	including	86.9	89.9	3.0	10.80
TGC-0031	which includes	87.2	87.5	0.3	39.53
TGC-0031	and	87.5	87.8	0.3	36.62
TGC-0031	and including	90.5	91.1	0.6	28.85
TGC-0031	and	92.0	94.7	2.7	24.94
TGC-0031	which includes	92.6	92.9	0.3	116.56
TGC-0031	and	93.8	94.1	0.3	64.28
TGC-0031	and	95.3	95.6	0.3	6.90
TGC-0032		10.2	10.8	0.6	0.68
TGC-0032		18.0	18.3	0.3	32.02
TGC-0032		22.8	23.7	0.9	20.11
TGC-0032		52.2	52.8	0.6	2.66
TGC-0032		58.2	58.5	0.3	9.18
TGC-0032		69.6	72.0	2.4	19.46
TGC-0032		76.5	80.1	3.6	4.58
TGC-0032		85.2	87.3	2.1	14.59
TGC-0032		88.5	91.5	3.0	2.80
TGC-0032	including	88.5	89.7	1.2	5.59
TGC-0032		98.4	98.7	0.3	16.30
TGC-0032		106.2	107.1	0.9	41.62
TGC-0032		108.9	109.5	0.6	4.20
TGC-0034		21.6	23.7	2.1	24.84
TGC-0034		24.0	32.1	8.1	25.96
TGC-0034	including	24.0	24.9	0.9	14.30

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0034	which includes	24.0	24.3	0.3	33.61
TGC-0034	and	25.2	32.1	6.9	28.61
TGC-0034	which includes	25.2	25.8	0.6	47.66
TGC-0034	and	30.3	30.6	0.3	59.31
TGC-0034	and	30.6	31.5	0.9	118.95
TGC-0034		56.1	56.4	0.3	0.90
TGC-0034		60.3	61.2	0.9	4.33
TGC-0034		66.3	69.9	3.6	120.76
TGC-0034	including	66.3	68.1	1.8	237.52
TGC-0034	which includes	67.5	67.8	0.3	1396.31
TGC-0034	and	69.0	69.9	0.9	7.92
TGC-0034		72.6	73.2	0.6	0.61
TGC-0034		74.7	75.6	0.9	5.70
TGC-0034		80.7	83.1	2.4	22.46
TGC-0034	including	81.6	82.5	0.9	57.46
TGC-0034	which includes	81.6	81.9	0.3	166.16
TGC-0034	and	82.8	83.1	0.3	4.25
TGC-0034		86.1	90.3	4.2	3.06
TGC-0034	including	88.8	90.3	1.5	7.06
TGC-0034		91.5	91.8	0.3	1.42
TGC-0034		93.0	94.2	1.2	1.06
TGC-0034		95.4	99.9	4.5	3.10
TGC-0034	including	98.7	99.9	1.2	9.10
TGC-0035		33.0	33.6	0.6	8.28
TGC-0035		36.0	37.5	1.5	6.21
TGC-0035		39.3	40.5	1.2	10.55
TGC-0035		48.0	51.9	3.9	4.33
TGC-0035	including	50.1	51.9	1.8	8.72
TGC-0035	which includes	51.0	51.3	0.3	46.28
TGC-0035		53.7	54.3	0.6	1.71
TGC-0035		56.1	65.1	9.0	3.70
TGC-0035	including	61.5	62.1	0.6	7.65
TGC-0035	and	62.7	63.9	1.2	11.80
TGC-0035	which includes	63.0	63.3	0.3	31.89
TGC-0035	and including	64.2	65.1	0.9	11.36
TGC-0035		67.5	72.9	5.4	3.44
TGC-0035	including	69.0	72.9	3.9	4.03
TGC-0035		74.7	77.7	3.0	4.38
TGC-0035		78.9	82.5	3.6	2.54
TGC-0035	including	80.1	82.5	2.4	3.24
TGC-0035		91.5	92.7	1.2	1.16
TGC-0036		11.4	12.0	0.6	2.50

Hole ID		From (m)	To (m)	Interval (m)	Au (g/t)
TGC-0036		18.0	19.2	1.2	4.08
TGC-0036		52.5	53.4	0.9	0.74
TGC-0036		57.3	59.7	2.4	51.58
TGC-0036		70.5	71.4	0.9	11.52
TGC-0036		86.1	88.2	2.1	2.43
TGC-0036	including	87.0	88.2	1.2	3.84
TGC-0036		95.1	98.4	3.3	0.83

Table 3. Collar coordinates and dates of completion for grade control drillholes reported in this release. Coordinates are in Fiji map grid.

Hole ID	Date	Easting	Northing	Elevation	Azimuth	Dip	Depth
	Completed						(m)
TGC-0001	24.10.22	1876437	3920744	140	290	27.4	34.0
TGC-0002	10.11.22	1876437	3920744	139	286	3.4	118.7
TGC-0003	25.11.22	1876437	3920744	139	288	4.0	116.8
TGC-0004	29.11.22	1876269	3920755	154	115	12.0	101.4
TGC-0005	13.12.22	1876437	3920744	137	115	12.0	128.5
TGC-0007	12.01.23	1876269	3920756	154	105	12.0	131.2
TGC-0008	21.01.23	1876437	3920744	139	293	4.0	124.2
TGC-0009	16.01.23	1876269	3920756	153	106	-10.0	80.3
TGC-0010	18.01.23	1876269	3920755	153	114	-11.0	83.3
TGC-0011	23.01.23	1876269	3920755	153	102	-10.0	95.2
TGC-0012	27.01.23	1876437	3920745	139	300	5.0	106.6
TGC-0013	27.01.23	1876269	3920757	153	97	-8.0	102.6
TGC-0014	2.02.22	1876269	3920757	153	93	-9.0	95.1
TGC-0015	10.02.22	1876437	3920744	139	289	-11.0	122.5
TGC-0016	7.02.22	1876269	3920757	153	85	-7.0	101.4
TGC-0017	10.02.22	1876269	3920757	153	82	-8.0	99.4
TGC-0018	22.02.23	1876437	3920744	139	285	-8.0	111.3
TGC-0019	15.02.23	1876269	3920758	153	79	-8.0	110.4
TGC-0020	20.02.23	1876269	3920755	153	119	-12.0	94.9
TGC-0021	23.02.23	1876269	3920755	153	115	-4.0	92.3
TGC-0022	27.02.23	1876269	3920755	153	113	-19.0	103.7
TGC-0023	4.03.23	1876437	3920744	139	293	-8.0	105.4
TGC-0024	1.03.23	1876269	3920755	152	113	-22.0	98.4
TGC-0025	4.03.23	1876269	3920756	152	108	-29.0	140.8
TGC-0026	8.03.23	1876269	3920756	153	106	-4.0	84.1
TGC-0027	3.04.23	1876437	3920744	139	299	10.0	120.5
TGC-0028	10.03.23	1876269	3920756	152	106	-27.0	116.7
TGC-0029	14.03.23	1876269	3920756	152	106	-23.0	95.2

TGC-0030	20.03.23	1876269	3920756	153	103	-16.0	98.6
TGC-0031	22.03.23	1876269	3920756	152	103	-25.0	95.6
TGC-0032	24.03.23	1876269	3920756	153	97	-16.0	110.6
TGC-0034	28.03.23	1876269	3920756	153	97	-12.0	101.4
TGC-0035	31.03.23	1876269	3920756	153	98	0.0	113.0
TGC-0036	4.04.23	1876269	3920756	153	94	-16.0	104.4