

LION ONE UPDATES DRILL RESULTS AT TUVATU

High grade composite results increased in Zone 5 drilling

North Vancouver, B.C., August 15, 2023 - Lion One Metals Limited (TSX-V: LIO) (OTCQX: LOMLF) (ASX: LLO) ("Lion One" or the "Company") is issuing an update on composite drill results reported in the company's August 10, 2023 news release.

The August 10, 2023 news release reported infill and grade control drill results from Zone 5 of the company's Tuvatu alkaline gold project in Fiji. Several composite gold grades reported in that news release are here updated.

Gold analysis at Tuvatu is conducted using fire assay with an atomic absorption (AA) finish. Samples that return grades over 10 g/t Au are then re-analyzed by gravimetric method. The gravimetric method is considered more accurate than fire assay for high-grade samples. Lion One has therefore recently adopted a new protocol whereby gravimetric results are reported for samples that return over 10 g/t Au. In the August 10, 2023 news release, composite intervals were calculated using fire assay values rather than gravimetric values, whereas high-grade individual assays were quoted using the more accurate gravimetric results. This led to a discrepancy between the composite values and the underlying assay values for certain intervals. The difference between fire assay and gravimetric analyses tends to be greater for higher grade samples. A total of 21 composite values have been updated and are presented in Table 1 below. The majority of the updated results are greater than was initially reported.

Table 1. Updated composite intervals from Zone 5 infill and grade control drilling. Green represents a positive

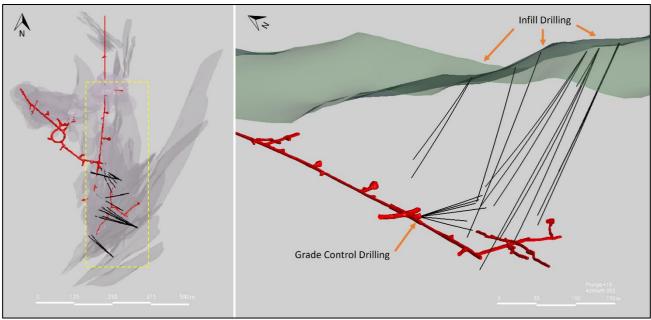
change, red represents a negative change. Intervals are ordered by decreasing gold content.

Hole ID	From	То	Interval (m)	Updated Au (g/t)	Original Au (g/t)	Change (g/t)
TGC-0067	48.2	50	1.8	314.27	261.93	52.34
TUDDH-643	242.7	249.3	6.6	83.47	80.78	2.69
TGC-0067	53.3	54.2	0.9	104.00	93.05	10.95
TUDDH-643	111.6	114.9	3.3	18.40	17.48	0.92
TUDDH-643	161.7	163.2	1.5	16.13	15.96	0.17
TUDDH-638	254.7	257	2.3	10.25	9.41	0.84
TUDDH-643	101.9	103.1	1.2	13.50	13.13	0.37
TUDDH-643	123.4	124	0.6	25.19	25.95	-0.76
TGC-0061	219.2	220.4	1.2	10.31	8.32	1.99
TUDDH-637	45.3	45.6	0.3	35.98	36.2	-0.22
TUDDH-643	52.2	52.5	0.3	31.87	33.51	-1.64
TUDDH-644	55.8	58.2	2.4	3.43	3.4	0.03
TGC-0065	53.1	55.2	2.1	3.91	3.82	0.09
TUDDH-634	49.2	50.7	1.5	5.44	5.68	-0.24
TUDDH-637	216.4	217	0.6	11.63	10.99	0.64
TGC-0065	128.5	129.4	0.9	7.42	6.8	0.62
TGC-0065	57.4	58.3	0.9	7.01	6.88	0.13
TUDDH-634	154.9	155.2	0.3	14.96	15.17	-0.21
TUDDH-656	173.6	173.9	0.3	11.66	10.14	1.52
TGC-0059	220.3	220.6	0.3	10.87	12.85	-1.98
TGC-0058	133.4	133.7	0.3	10.86	10.37	0.49

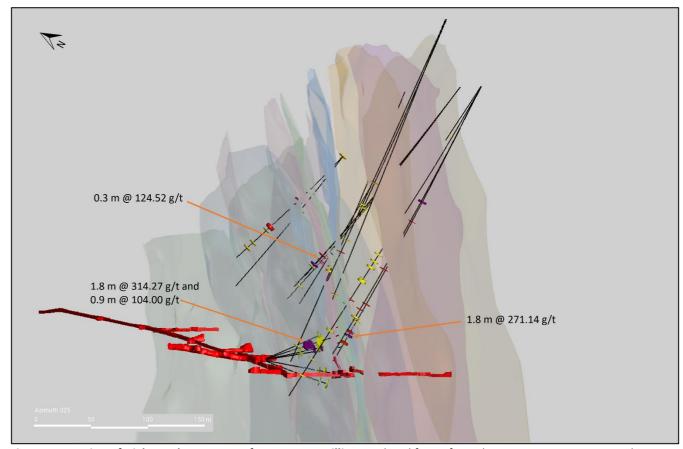
Tables 2 and 3 below are reproductions of Tables 1 and 2 from the <u>August 10, 2023</u> news release updated to include composite intervals calculated using assay results from the gravimetric method. Composite values that have been changed are highlighted with green representing positive changes and red representing negative changes. Values left uncoloured represent intervals for which there is no change.

Table 2. Highlights of composited infill drill results in the Zone 5 area. Reproduction of Table 1 from the August 10, 2023 news release, with updated composite grades. For full results see Table 4 in the appendix.

Hole ID	release, with update	From	То	Interval (m)	Au (g/t)	Change (g/t)
TUDDH-634		123.4	124	0.6	25.19	-0.76
TUDDH-637		161.7	163.2	1.5	16.13	0.17
	including	161.7	162.3	0.6	38.62	-
	which includes	161.7	162	0.3	72.46	-
TUDDH-637		198.2	202.1	3.9	5.38	-
	including	198.2	198.5	0.3	10.02	-
	and	199.7	200.6	0.9	3.42	-
	and	201.2	202.1	0.9	16.13	-
	which includes	201.8	202.1	0.3	40.21	-
TUDDH-643		111.6	114.9	3.3	18.4	0.92
	including	111.6	113.7	2.1	28.44	-
	which includes	113.1	113.7	0.6	95.63	-
TUDDH-643		242.7	249.3	6.6	83.47	2.69
	including	242.7	246.3	3.6	17.39	-
	which includes	243.9	245.7	1.8	55.49	-
	which includes	243.9	244.5	0.6	79.84	-
	and	245.1	245.7	0.6	14.89	-
	and also including	247.5	249.3	1.8	271.14	-
	which includes	247.5	247.8	0.3	40.03	-
	and	248.7	249.6	0.6	793.24	-
TUDDH-643		254.7	257	2.3	10.25	0.84
	including	254.7	255.3	0.6	35.54	-
TUDDH-650		192.6	194.1	1.5	14.93	-
	including	192.6	193.5	0.9	23.89	-
TUDDH-650		203.5	207.4	3.9	11.84	-
	including	203.5	204.7	1.2	35.18	-
	which includes	203.5	204.1	0.6	48.27	-
	and	204.1	204.7	0.6	22.09	-
TUDDH-651		184.6	185.2	0.6	32.65	-
TUDDH-651		194.5	197.2	2.7	17.2	-
	including	194.5	196	1.5	25.92	-
	which includes	195.4	195.7	0.3	124.52	-
	and also including	196.9	197.2	0.3	25.22	-
TUDDH-653		53	56.9	3.9	9.53	-
	including	55.1	56.9	1.8	19.47	-



	which includes	56	56.3	0.3	46.92	-
	and	56.6	56.9	0.3	55.08	-
TUDDH-653		89.5	96.3	6.8	9.96	-
	including	91.3	92.2	0.9	66.62	-
	which includes	91.6	91.9	0.3	165.95	-
	and	91.9	92.2	0.3	30.46	-
TUDDH-655		96.4	97.9	1.5	8.24	-
	including	96.7	97	0.3	18.48	-
	and	97.6	97.9	0.3	20.77	-
TUDDH-656		101.9	103.1	1.2	13.5	0.37
	including	101.9	102.5	0.6	19.73	-
	and	102.5	103.1	0.6	6.54	-


Table 3. Highlights of composited grade control drill results in the Zone 5 area. Reproduction of Table 2 from the August 10, 2023 news release, with updated composite grades. For full results see Table 5 in the appendix.

Hole ID		From	То	Interval (m)	Au (g/t)	Change (g/t)
TGC-0059		57.4	58.3	0.9	7.01	0.13
	including	57.4	57.7	0.3	12.89	-
	and	58	58.3	0.3	8.14	-
TGC-0061		55.8	58.2	2.4	3.43	0.03
	including	57.3	37.6	0.3	12.84	-
TGC-0065		45.3	45.6	0.3	35.98	-0.22
TGC-0065		49.2	50.7	1.5	5.44	-0.24
	including	49.2	49.5	0.3	9.59	-
	and	50.4	50.7	0.3	15.76	-
TGC-0065		52.2	52.5	0.3	31.87	-1.64
TGC-0067		48.2	50	1.8	314.27	52.34
	including	48.8	49.4	0.6	934.91	-
	which includes	48.8	49.1	0.3	1839.55	-
	and	49.1	49.4	0.3	30.26	-
TGC-0067		53.3	54.2	0.9	104	10.95
	including	53.3	53.9	0.6	155.68	-
	which includes	53.3	53.6	0.3	10.89	-
	and	53.6	53.9	0.3	300.47	-

Figure 1. Location of Zone 5 Infill and Grade Control Drillholes. Reproduced from August 10, 2023 news release for context. Left image: Plan view of Tuvatu showing Zone 5 infill and grade control drillholes in relation to the mineralized lodes. Drillholes are shown in black, mineralized lodes in pale grey, and underground developments in red. The yellow dashed square represents the area illustrated in the image on the right. Right image: Oblique view of Zone 5 infill and grade control drilling looking approximately northeast. Infill drilling was conducted from surface whereas grade control drilling was conducted from underground.

Figure 2. Location of High-Grade Intercepts from Zone 5 Drilling. Updated figure from the August 10, 2023 news release, with updated composite gold intervals. Composite intervals with grades between 3 and 10 g/t Au are shown in yellow, intervals with grades between 10 and 30 g/t Au are shown in red, and intervals over 30 g/t Au are shown in purple. Select high-grade intervals are identified. Image is looking approximately north-northeast, grades are gold grades in g/t.

About Tuvatu

The Tuvatu Alkaline Gold Project is located on the island of Viti Levu in Fiji. The January 2018 mineral resource for Tuvatu as disclosed in the technical report "Technical Report and Preliminary Economic Assessment for the Tuvatu Gold Project, Republic of Fiji", dated September 25, 2020, and prepared by Mining Associates Pty Ltd of Brisbane Qld, comprises 1,007,000 tonnes indicated at 8.50 g/t Au (274,600 oz. Au) and 1,325,000 tonnes inferred at 9.0 g/t Au (384,000 oz. Au) at a cut-off grade of 3.0 g/t Au. The technical report is available on the Lion One website at www.liononemetals.com and on the SEDAR website at www.sedar.com.

Qualified Person

In accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"), Sergio Cattalani, P.Geo, Senior Vice President Exploration, is the Qualified Person for the Company and has reviewed and is responsible for the technical and scientific content of this news release.

QAQC Procedures

Lion One adheres to rigorous QAQC procedures above and beyond basic regulatory guidelines in conducting its sampling, drilling, testing, and analyses. The Company utilizes its own fleet of diamond drill rigs, using PQ, HQ and NQ sized drill core rods. Drill core is logged and split by Lion One personnel on site. Samples are delivered to and analyzed at the Company's geochemical and metallurgical laboratory in Fiji. Duplicates of all samples with grades above 0.5 g/t Au are both re-assayed at Lion One's lab and delivered to ALS Global Laboratories in Australia (ALS) for check assay determinations. All samples for all high-grade intercepts are sent to ALS for check assays. All samples are pulverized to 85% passing through 75 microns. Gold analysis is carried out using fire assay with an AA finish. Samples that have returned grades greater than 10.00 g/t Au are then re-analyzed by gravimetric method. For samples that return greater than 0.50 g/t Au, repeat fire assay runs are carried out and repeated until a result is obtained that is within 10% of the original fire assay run. Lion One's laboratory can also assay for a range of 71 other elements through Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), but currently focuses on a suite of 9 important pathfinder elements. All duplicate anomalous samples are sent to ALS labs in Townsville QLD and are analyzed by the same methods (Au-AA26, and Au-GRA22 where applicable). ALS also analyses 33 pathfinder elements by HF-HNO3-HClO4 acid digestion, HCl leach and ICP-AES (method ME-ICP61).

About Lion One Metals Limited

Lion One's flagship asset is 100% owned, fully permitted high grade Tuvatu Alkaline Gold Project, located on the island of Viti Levu in Fiji. Lion One envisions a low-cost high-grade underground gold mining operation at Tuvatu coupled with exciting exploration upside inside its tenements covering the entire Navilawa Caldera, an underexplored yet highly prospective 7km diameter alkaline gold system. Lion One's CEO Walter Berukoff leads an experienced team of explorers and mine builders and has owned or operated over 20 mines in 7 countries. As the founder and former CEO of Miramar Mines, Northern Orion, and La Mancha Resources, Walter is credited with building over \$3 billion of value for shareholders.

On behalf of the Board of Directors of Lion One Metals Limited

"Walter Berukoff", Chairman and CEO

Contact Investor Relations

Toll Free (North America) Tel: 1-855-805-1250

Email: <u>info@liononemetals.com</u>
Website: <u>www.liononemetals.com</u>

Neither the TSX Venture Exchange nor its Regulation Service Provider accepts responsibility for the adequacy or accuracy of this release

This press release may contain statements that may be deemed to be "forward-looking statements" within the meaning of applicable Canadian securities legislation. All statements, other than statements of historical fact, included herein are forwardlooking information. Generally, forward-looking information may be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "proposed", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases, or by the use of words or phrases which state that certain actions, events or results may, could, would, or might occur or be achieved. This forwardlooking information reflects Lion One Metals Limited's current beliefs and is based on information currently available to Lion One Metals Limited and on assumptions Lion One Metals Limited believes are reasonable. These assumptions include, but are not limited to, the actual results of exploration projects being equivalent to or better than estimated results in technical reports, assessment reports, and other geological reports or prior exploration results. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of Lion One Metals Limited or its subsidiaries to be materially different from those expressed or implied by such forward-looking information. Such risks and other factors may include, but are not limited to: the stage development of Lion One Metals Limited, general business, economic, competitive, political and social uncertainties; the actual results of current research and development or operational activities; competition; uncertainty as to patent applications and intellectual property rights; product liability and lack of insurance; delay or failure to receive board or regulatory approvals; changes in legislation, including environmental legislation, affecting mining, timing and availability of external financing on acceptable terms; not realizing on the potential benefits of technology; conclusions of economic evaluations; and lack of qualified, skilled labour or loss of key individuals. Although Lion One Metals Limited has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking information, there may be other factors that cause results not to be as anticipated, estimated or intended. Accordingly, readers should not place undue reliance on forward-looking information. Lion One Metals Limited does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

Appendix 1: Full Drill Results and Collar Information

Table 4. Updated composite results from infill drillholes in the Zone 5 area (grade >0.5 g/t Au). Green indicates a positive change from the originally reported value, red represents a negative change.

Hole ID		From	То	Interval (m)	Au (g/t)	Change (g/t)
TUDDH-634		92.2	92.8	0.6	0.52	-
TUDDH-634		93.7	94.3	0.6	0.5	-
TUDDH-634		123.4	124	0.6	25.19	-0.76
TUDDH-634		125.2	125.5	0.3	1	-
TUDDH-634		128.5	129.4	0.9	7.42	0.62
TUDDH-634	including	129.1	129.4	0.3	10.89	-
TUDDH-634		148.5	149.1	0.6	1.46	-
TUDDH-637		48.2	48.8	0.6	0.6	-
TUDDH-637		68.8	69.4	0.6	0.81	-
TUDDH-637		161.7	163.2	1.5	16.13	0.17
TUDDH-637	including	161.7	162.3	0.6	38.62	-
TUDDH-637	which includes	161.7	162	0.3	72.46	-
TUDDH-637		173.1	177.6	4.5	2.69	-
TUDDH-637	including	173.1	174	0.9	8.59	-
TUDDH-637		180	182.1	2.1	2.7	-
TUDDH-637		183.9	187.5	3.6	2.76	-
TUDDH-637	including	185.7	187.5	1.8	5.03	-
TUDDH-637		198.2	202.1	3.9	5.38	-
TUDDH-637	including	198.2	198.5	0.3	10.02	-
TUDDH-637	and	199.7	200.6	0.9	3.42	-
TUDDH-637	and	201.2	202.1	0.9	16.13	-
TUDDH-637	which includes	201.8	202.1	0.3	40.21	-
TUDDH-637		219.2	220.4	1.2	10.31	1.99
TUDDH-637	including	219.5	220.4	0.9	12.79	-
TUDDH-637		222.2	222.5	0.3	2.29	-
TUDDH-637		224	226.4	2.4	1.87	-
TUDDH-637		243.5	245	1.5	1.13	-
TUDDH-637		251.3	253.7	2.4	2.46	-
TUDDH-637		258.5	259.1	0.6	0.94	-
TUDDH-637		281.9	282.5	0.6	5.96	-
TUDDH-637		290.9	292.1	1.2	1.97	-
TUDDH-637		298.7	299.6	0.9	6.68	-
TUDDH-638		14.2	14.8	0.6	1.31	-
TUDDH-638		29.8	30.4	0.6	1.29	-
TUDDH-638		106.9	107.2	0.3	0.99	-
TUDDH-638		123.1	123.7	0.6	1.44	-
TUDDH-638		154.9	155.2	0.3	14.96	-0.21
TUDDH-638		162.4	163.3	0.9	3.19	-
TUDDH-638		166.3	167.5	1.2	6.23	-
TUDDH-638	including	166.3	166.9	0.6	8.43	-

TUDDH-638		169.9	171.7	1.8	3.6	_
TUDDH-638	including	170.8	171.7	0.9	6.07	-
TUDDH-638		179.8	181.3	1.5	1.62	-
TUDDH-638		235.9	236.5	0.6	0.87	-
TUDDH-638		241.3	242.5	1.2	4.8	-
TUDDH-638	including	241.9	242.5	0.6	9.06	-
TUDDH-639		50.3	50.6	0.3	5.17	-
TUDDH-641		153	153.7	0.7	2.78	-
TUDDH-641	including	153	153.3	0.3	5.1	-
TUDDH-641		174.5	174.8	0.3	0.57	-
TUDDH-641		176.9	178.7	1.8	2.32	-
TUDDH-641	including	176.9	177.5	0.6	5.1	-
TUDDH-643	_	111.6	114.9	3.3	18.4	0.92
TUDDH-643	including	111.6	113.7	2.1	28.44	-
TUDDH-643	which includes	113.1	113.7	0.6	95.63	-
TUDDH-643		133.4	133.7	0.3	10.86	0.49
TUDDH-643		158.8	159.1	0.3	0.83	-
TUDDH-643		163.3	163.9	0.6	5.3	-
TUDDH-643		173.6	173.9	0.3	11.66	1.52
TUDDH-643		213.7	214.6	0.9	0.61	-
TUDDH-643		216.4	217	0.6	11.63	0.64
TUDDH-643		233.8	234.4	0.6	5.48	-
TUDDH-643		242.7	249.3	6.6	83.47	2.69
TUDDH-643	including	242.7	246.3	3.6	17.39	-
TUDDH-643	which includes	243.9	245.7	1.8	55.49	-
TUDDH-643	which includes	243.9	244.5	0.6	79.84	-
TUDDH-643	and	245.1	245.7	0.6	14.89	-
TUDDH-643	and also including	247.5	249.3	1.8	271.14	-
TUDDH-643	which includes	247.5	247.8	0.3	40.03	-
TUDDH-643	and	248.7	249.6	0.6	793.24	-
TUDDH-643		251.7	252.9	1.2	0.97	-
TUDDH-643		254.7	257	2.3	10.25	0.84
TUDDH-643	including	254.7	255.3	0.6	35.54	-
TUDDH-643		260.4	261.3	0.9	0.69	-
TUDDH-643		262.8	266.1	3.3	1.63	-
TUDDH-643		268.3	268.8	0.5	1.3	-
TUDDH-644		172.3	175	2.7	2.33	-
TUDDH-644	including	173.8	174.4	0.6	5.83	-
TUDDH-644		208.6	208.9	0.3	4.37	-
TUDDH-644		220.3	220.6	0.3	10.87	-1.98
TUDDH-644		237.1	237.7	0.6	1.19	-
TUDDH-646		116.7	117.3	0.6	1.65	-
TUDDH-646		154.8	155.1	0.3	0.67	-
TUDDH-646		181.5	183.3	1.8	2.41	-
TUDDH-646	including	183	183.3	0.3	13.29	-

TUDDH-646		223.9	224.5	0.6	8.98	_
TUDDH-646	including	224.2	224.5	0.3	15.09	-
TUDDH-646	3	231.1	233.2	2.1	4.23	-
TUDDH-646	including	232	232.6	0.6	10.27	-
TUDDH-646	3	252.3	252.7	0.4	2.81	-
TUDDH-646		253.9	254.2	0.3	2.16	-
TUDDH-649		24.9	25.2	0.3	1.93	-
TUDDH-649		153.6	154.2	0.6	0.74	-
TUDDH-649		161.7	162.3	0.6	0.52	-
TUDDH-649		188.1	190.8	2.7	1.21	-
TUDDH-649		248.7	249.3	0.6	1.17	-
TUDDH-649		251.4	252.3	0.9	0.86	-
TUDDH-649		257.1	257.4	0.3	3.31	-
TUDDH-650		53.6	53.9	0.3	0.61	-
TUDDH-650		76.7	77	0.3	0.62	-
TUDDH-650		104.1	104.4	0.3	0.67	-
TUDDH-650		148.5	149.1	0.6	0.51	-
TUDDH-650		179.1	179.4	0.3	1.62	-
TUDDH-650		180.6	181.2	0.6	0.51	-
TUDDH-650		192.6	194.1	1.5	14.93	-
TUDDH-650	including	192.6	193.5	0.9	23.89	-
TUDDH-650		199	199.3	0.3	1.66	-
TUDDH-650		203.5	207.4	3.9	11.84	-
TUDDH-650	including	203.5	204.7	1.2	35.18	-
TUDDH-650	which includes	203.5	204.1	0.6	48.27	-
TUDDH-650	and	204.1	204.7	0.6	22.09	-
TUDDH-650		210.4	210.7	0.3	2.05	-
TUDDH-651		18.25	18.85	0.6	0.93	-
TUDDH-651		80.55	81.15	0.6	2.09	-
TUDDH-651		100.65	100.95	0.3	1.46	-
TUDDH-651		118.65	119.25	0.6	1.46	-
TUDDH-651		139.95	140.55	0.6	4.39	-
TUDDH-651		184.6	185.2	0.6	32.65	-
TUDDH-651		194.5	197.2	2.7	17.2	-
TUDDH-651	including	194.5	196	1.5	25.92	-
TUDDH-651	which includes	195.4	195.7	0.3	124.52	-
TUDDH-651	and also including	196.9	197.2	0.3	25.22	-
TUDDH-651		222.4	224.8	2.4	2.22	-
TUDDH-653		0	0.6	0.6	3.37	-
TUDDH-653		21.9	22.2	0.3	1.26	-
TUDDH-653		53	56.9	3.9	9.53	-
TUDDH-653	including	55.1	56.9	1.8	19.47	-
TUDDH-653	which includes	56	56.3	0.3	46.92	-
TUDDH-653	and	56.6	56.9	0.3	55.08	-
TUDDH-653		64.4	65	0.6	0.56	-

TUDDH-653		89.5	96.3	6.8	9.96	-
TUDDH-653	including	91.3	92.2	0.9	66.62	-
TUDDH-653	which includes	91.6	91.9	0.3	165.95	-
TUDDH-653	and	91.9	92.2	0.3	30.46	-
TUDDH-653		111.6	111.9	0.3	6.53	-
TUDDH-653		116.7	118.8	2.1	1.59	-
TUDDH-653		120	120.6	0.6	0.59	-
TUDDH-655		59.7	61.5	1.8	2.74	-
TUDDH-655		96.4	97.9	1.5	8.24	-
TUDDH-655	including	96.7	97	0.3	18.48	-
TUDDH-655	and	97.6	97.9	0.3	20.77	-
TUDDH-655		99.1	99.7	0.6	0.9	-
TUDDH-655		101.5	102.1	0.6	1.23	-
TUDDH-655		118.3	118.6	0.3	3.16	-
TUDDH-655		126.1	126.7	0.6	1.04	-
TUDDH-656		27.2	28.4	1.2	0.89	-
TUDDH-656		77	77.6	0.6	1.05	-
TUDDH-656		80.6	81.2	0.6	0.7	-
TUDDH-656		101.9	103.1	1.2	13.5	0.37
TUDDH-656	including	101.9	102.5	0.6	19.73	-
TUDDH-656	and	102.5	103.1	0.6	6.54	-
TUDDH-656		106.7	107	0.3	0.58	-
TUDDH-656		119.6	119.9	0.3	1.71	-
TUDDH-656		130.1	132.5	2.4	4.83	-
TUDDH-656	including	131.9	132.5	0.6	7.99	-
TUDDH-656		162.5	162.8	0.3	8.55	-

Table 5. Updated composite results from grade control drillholes in the Zone 5 area (grade >0.5 g/t Au). Green indicates a positive change from the originally reported value, red represents a negative change.

Hole ID		From	То	Interval (m)	Au (g/t)	Change (g/t)
TGC-0056		26.7	29.4	2.7	1.52	-
TGC-0056		38.1	38.4	0.3	2.31	-
TGC-0056		39.6	39.9	0.3	0.73	-
TGC-0058		34.2	34.8	0.6	0.66	-
TGC-0058		35.4	35.7	0.3	0.51	-
TGC-0058		48.3	48.6	0.3	4.83	-
TGC-0058		53.1	55.2	2.1	3.91	0.09
TGC-0058	including	53.1	54	0.9	8.74	-
TGC-0058		56.4	57	0.6	1.1	-
TGC-0059		39.4	40.3	0.9	0.53	-
TGC-0059		50.5	50.8	0.3	3.1	-
TGC-0059		53.2	54.4	1.2	0.88	-
TGC-0059		57.4	58.3	0.9	7.01	0.13
TGC-0059	including	57.4	57.7	0.3	12.89	-
TGC-0059	and	58	58.3	0.3	8.14	-
TGC-0061		34.2	34.5	0.3	0.69	-
TGC-0061		35.4	36	0.6	0.75	-
TGC-0061		45.6	46.8	1.2	0.56	-
TGC-0061		49.8	50.4	0.6	0.84	-
TGC-0061		55.8	58.2	2.4	3.43	0.03
TGC-0061	including	57.3	37.6	0.3	12.84	-
TGC-0065		29.7	30	0.3	0.61	-
TGC-0065		32.4	33.6	1.2	2.44	-
TGC-0065		45.3	45.6	0.3	35.98	-0.22
TGC-0065		49.2	50.7	1.5	5.44	-0.24
TGC-0065	including	49.2	49.5	0.3	9.59	-
TGC-0065	and	50.4	50.7	0.3	15.76	-
TGC-0065		52.2	52.5	0.3	31.87	-1.64
TGC-0067		23.6	23.9	0.3	1.06	-
TGC-0067		48.2	50	1.8	314.27	52.34
TGC-0067	including	48.8	49.4	0.6	934.91	-
TGC-0067	which includes	48.8	49.1	0.3	1839.55	-
TGC-0067	and	49.1	49.4	0.3	30.26	-
TGC-0067		53.3	54.2	0.9	104	10.95
TGC-0067	including	53.3	53.9	0.6	155.68	-
TGC-0067	which includes	53.3	53.6	0.3	10.89	-
TGC-0067	and	53.6	53.9	0.3	300.47	-
TGC-0067		63.2	63.8	0.6	2.89	-
TGC-0067		67.1	67.4	0.3	9.18	-

Table 6. Collar coordinates for grade control and infill drillholes reported in this release. Coordinates are in Fiji map grid.

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	DEPTH
TGC-0056	1876439	3920583	117	79.6	121.2	9.5
TGC-0058	1876438	3920583	116	62.2	124.6	-11.3
TGC-0059	1876438	3920583	116	74.1	122.5	-22.0
TGC-0061	1876438	3920582	118	82.8	142.6	20.1
TGC-0065	1876438	3920582	117	71.2	133.2	10.6
TGC-0067	1876437	3920581	118	86.9	155.6	12.4
TUDDH-634	1876528	3920501	310	182.5	257.6	-55.3
TUDDH-637	1876557	3920389	352	320.3	292.0	-60.5
TUDDH-638	1876509	3920445	349	257.5	294.3	-66.4
TUDDH-639	1876556	3920389	352	56.6	297.3	-57.0
TUDDH-641	1876477	3920293	402	185.7	309.3	-66.1
TUDDH-643	1876556	3920389	352	274.8	297.1	-63.4
TUDDH-644	1876476	3920293	402	248.5	307.0	-64.3
TUDDH-646	1876557	3920388	352	270.5	283.6	-63.1
TUDDH-649	1876476	3920294	402	262.3	315.7	-66.5
TUDDH-650	1876539	3920395	352	230.8	283.0	-52.0
TUDDH-651	1876539	3920395	352	240.3	293.5	-53.3
TUDDH-653	1876496	3920546	296	131.4	281.2	-46.3
TUDDH-655	1876496	3920546	296	151.7	282.7	-51.5
TUDDH-656	1876539	3920395	352	215.3	306.9	-52.2