

LION ONE REPORTS NEW HIGH-GRADE GOLD RESULTS AT TUVATU

North Vancouver, B.C., September 14, 2023 - Lion One Metals Limited (TSX-V: LIO) (OTCQX: LOMLF) (ASX: LLO) ("Lion One" or the "Company") is pleased to report significant new high-grade gold results from ongoing grade control drilling at its 100% owned Tuvatu Alkaline Gold Project in Fiji.


Assay results are presented here for grade control drilling completed in the Zone 2 area of Tuvatu, focusing primarily on the URW1, URA1 and Murau lode systems. Mining of the URA1 lode and the URW1 lode system is ongoing and grade control drilling is being conducted in advance of future mining in these areas (see news releases dated <u>April 3, 2023</u> and <u>May 18, 2023</u>). The results reported here represent material that is scheduled to be mined in Q4 2023 and throughout 2024.

Lion One Chairman and CEO Walter Berukoff commented: "The results from our grade control drill program continue to exceed expectations. The program is continuously returning very high-grade material with excellent mining widths. As we increase our drill density at Tuvatu we continue to identify very high-grade zones upon which to focus and prioritize our mining plan, and which will help us to add additional tonnage to our growing stockpile of high-grade material as we ramp up to our first gold production in Q4 2023".

Highlights of new Zone 2 grade control drilling (3 g/t Au cutoff):

- 19.78 g/t Au over 6.0 m (including 31.52 g/t Au over 3.0 m) (TGC-0071, from 114.0 m depth)
- 14.83 g/t Au over 6.0 m (including 25.16 g/t Au over 2.4 m) (TGC-0055, from 90.9 m depth)
- 18.08 g/t Au over 3.6 m (including 32.74 g/t Au over 1.5 m) (TGC-0073, from 90.0 m depth)
- 25.25 g/t Au over 2.4 m (including 149.63 g/t Au over 0.3 m) (TGC-0078, from 95.2 m depth)
- 45.89 g/t Au over 0.9 m (TGC-0080, from 23.4 m depth)
- 8.00 g/t Au over 4.8 m (including 21.05 g/t Au over 0.9 m) (TGC-0080, from 47.4 m depth)
- 8.52 g/t Au over 3.3 m (including 11.16 g/t Au over 1.8 m) (TGC-0053, from 13.8 m depth)
- 17.73 g/t Au over 1.5 m (including 20.98 g/t Au over 0.9 m) (TGC-0053, from 56.4 m depth)
- 14.13 g/t Au over 1.8 m (including 18.64 g/t Au over 1.2 m) (TGC-0062, from 67.5 m depth)

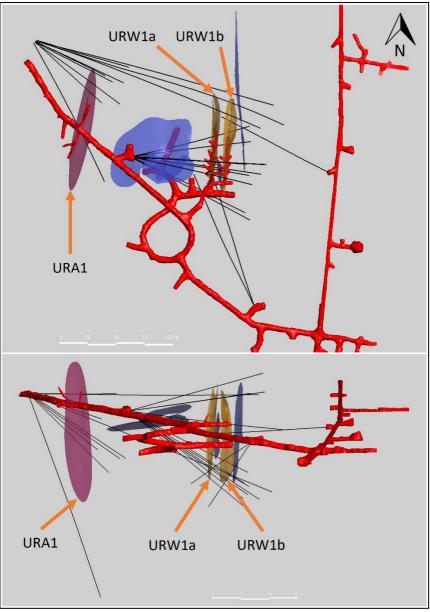
Note: Grade control drillhole composites are calculated using a 3 g/t Au cutoff with maximum internal dilution intervals of 1 m at < 3 g/t Au.

Figure 1. Location of Zone 2 Grade Control Drillholes. Left image: Plan view of Tuvatu showing Zone 2 grade control drillholes in relation to the mineralized lodes. Drillholes are shown in black, mineralized lodes in pale grey, and underground developments in red. The yellow dashed circle represents the Zone 2 area of the deposit.

Table 1. Highlights of composited grade control drill results in the Zone 2 area. Composites are calculatedusing a 3 g/t Au cutoff with maximum internal dilution intervals of 1 m at <3 g/t Au. For full results see Table</td>2 in the appendix. For full results using a 0.5 g/t cutoff see Table 3 in the appendix.

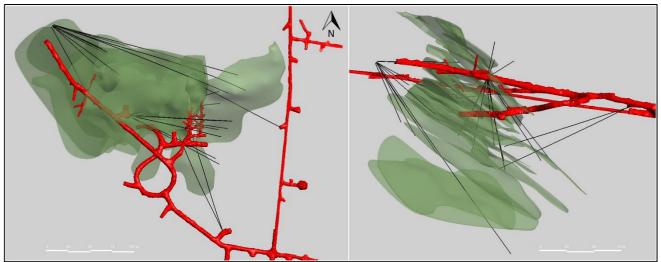
Hole ID		From	То	Interval (m)	Au (g/t)
TGC-0053		13.8	17.1	3.3	8.52
	including	16.2	17.1	0.9	15.89
TGC-0053		56.4	57.9	1.5	17.73
	including	56.4	57.3	0.9	20.98
	and	57.3	57.9	0.6	12.86
TGC-0055		87	87.3	0.3	17.86
TGC-0055		90.9	96.9	6	14.83
	including	90.9	92.7	1.8	12.22
	which includes	90.9	91.5	0.6	10.93
	and	91.5	91.8	0.3	23.82
	and	91.8	92.7	0.9	9.22
	and also including	94.5	96.9	2.4	25.16
	which includes	94.5	95.4	0.9	35.76
	and	95.4	96	0.6	10.87
	and	96	96.3	0.3	30.26

	and	96.3	96.9	0.6	20.98
TGC-0057		89.4	91.2	1.8	9.22
	including	89.4	89.7	0.3	19.23
TGC-0057	<u> </u>	113.7	115.2	1.5	10.84
	including	114.3	115.2	0.9	15.86
TGC-0060		76.1	76.4	0.3	25.43
TGC-0062		67.5	69.3	1.8	14.13
	including	68.1	68.7	0.6	15.29
	and	68.7	69.3	0.6	21.99
TGC-0064		182.9	183.5	0.6	33.08
	including	182.9	183.2	0.3	58.29
TGC-0066	<u> </u>	163.5	163.8	0.3	12.85
TGC-0070		71.2	71.8	0.6	25.89
TGC-0071		114	120	6	19.78
	including	114	114.3	0.3	30.17
	and	114.3	114.9	0.6	8.32
	and	115.5	115.8	0.3	10.68
	and	115.8	116.4	0.6	9.96
	and	117	120	3	31.52
	which includes	117	117.6	0.6	33.78
	and	117.6	118.5	0.9	20.88
	and	118.5	119.4	0.9	42.75
	and	119.4	120	0.6	28.35
TGC-0073		79.8	81.3	1.5	7.91
	including	79.8	80.4	0.6	10.8
	and	80.4	80.7	0.3	10.95
TGC-0073		87.9	88.2	0.3	10.85
TGC-0073		90	93.6	3.6	18.08
	including	90	90.3	0.3	8.41
	and	90.3	90.6	0.3	21.79
	and	90.9	92.4	1.5	32.74
	which includes	90.9	91.2	0.3	65.52
	and	91.2	91.5	0.3	38.81
	and	91.5	91.8	0.3	43.67
	and	91.8	92.4	0.6	7.86
TGC-0074		80.8	81.4	0.6	41.5
	including	80.8	81.1	0.3	35.63
	and	81.1	81.4	0.3	47.38
TGC-0074		118.9	120.1	1.2	11.65
	including	118.9	119.2	0.3	10.48
	and	119.2	119.5	0.3	14.96
	and	119.5	119.8	0.3	10.75
	and	119.8	120.1	0.3	10.41
TGC-0078		14.5	14.8	0.3	18.52
TGC-0078		91.9	92.5	0.6	20.13

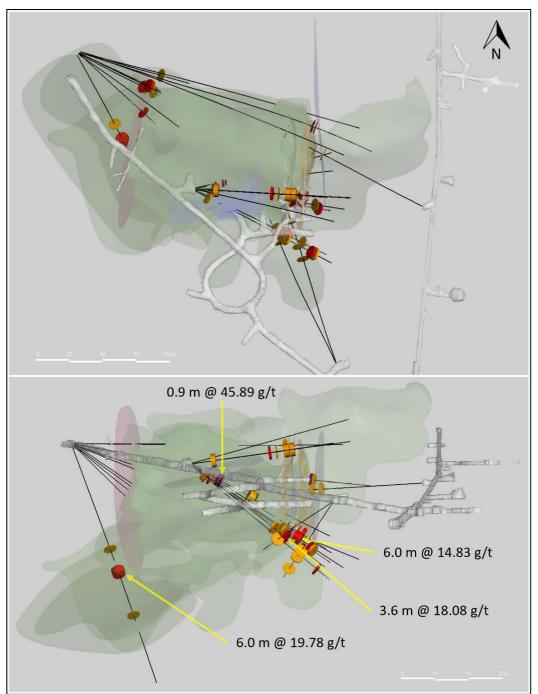

TGC-0078		95.2	97.6	2.4	25.25
	including	95.2	95.5	0.3	149.63
	and	96.1	97.6	1.5	9.28
	which includes	96.1	97	0.9	11.85
TGC-0080		21	22.2	1.2	11.67
	and	21.6	21.9	0.3	35.67
TGC-0080		23.4	24.3	0.9	45.89
TGC-0080		47.4	52.2	4.8	8
	including	48.3	48.6	0.3	18.03
	and	48.6	48.9	0.3	17.95
	and	49.8	50.7	0.9	21.05
	which includes	49.8	50.1	0.3	42.72
	and	50.1	50.4	0.3	15.08
TGC-0082		15.5	16.7	1.2	16.96
	including	16.1	16.7	0.6	29.06
	which includes	16.1	16.4	0.3	34.23
	and	16.4	16.7	0.3	23.89
TGC-0083		19.7	20	0.3	10.79
TGC-0083		43.7	45.2	0.6	11.32
	including	43.7	44	0.3	10.41
	and	44.9	45.2	0.3	12.23
TGC-0083		56.9	57.2	0.3	10.7
TGC-0083		65	65.6	0.6	25.12
	including	65	65.3	0.3	18.58
	and	65.3	65.6	0.3	31.67

Zone 2

The Zone 2 area of Tuvatu is located in the northwest part of the system along the western decline. It is the first part of the deposit scheduled for mining and encompasses a number of distinct lode systems, including the URW1, URA1, and Murau lode systems.


The URW1 lode system was the primary target for the current round of drilling. It consists predominantly of narrow, high-grade to locally bonanza-grade vein arrays and vein swarms that strike approximately N-S and dip sub-vertically to steeply east. Current modelling suggests that there are multiple separate lodes within the URW1 lode system. The first two of these lodes, URW1a and URW1b, are currently being mined. As reported on July 13, 2023 and July 27, 2023, mineralization in these lodes is both higher grade and more laterally extensive than initially anticipated. Grade control drilling in the URW1 area is targeting the up-dip and down-dip extensions of these lodes, 20 m to 40 m above and below the current mine drives. The URW1 lode system has a current strike length of approximately 300 m in the N-S direction, and a vertical extent of approximately 300 m.

Similarly, the URA1 lode is a narrow, steeply dipping, high-grade to locally bonanza-grade vein system. It was discovered during the development of the western decline and is intersected by the decline at approximately 75 m from the portal entrance. It trends approximately northeast-southwest and dips steeply to the southeast. It has a current strike length of approximately 100 m, and a vertical extent of approximately 120 m.


Figure 2. URA1 Lode and URW1 Lode System. Plan view (top) and view looking north (bottom) of the URA1 lode and the URW1 lode system in relation to the grade control holes reported here. Mining is ongoing in the URA1 lode (shown in purple) and the URW1a and URW1b lodes (shown in light brown). Additional lodes included in the URW1 lode system are shown in blue. Grade control drilling is targeting the up-dip and down-dip extensions of these lodes, focusing primarily on the URW1a and URW1b lodes, as evident in the bottom image.

The Murau lode system consists of a series of stacked relatively flat lying lodes that strike approximately eastwest and dip moderately to the south. Mining is scheduled to begin on the upper part of the Murau lode system in Q4 2023. The portion of the Murau lode system that is currently targeted for mining consists of a 110 m strike length in the east-west direction, a vertical extent of 55 m, and a down-dip extension of 100 m.

Figure 3. Murau Lode System. Plan view (left) and view looking east (right) of the Murau lode system in relation to the grade control drillholes reported here. Mining on the upper part of the Murau lode system is scheduled to start in Q4 2023. The stacked nature of the Murau lodes and their moderate dip to the south is visible in the right-hand image.

Grade Control Drilling

Figure 4. Location of High-Grade Intercepts from Zone 2 Grade Control Drilling, 3.0 g/t Au cutoff. Plan view (top) and view looking north (bottom) of the URA1 lode, the URW1 lode system, and the Murau lode system in relation to the grade control drillholes reported here, with high-grade intercepts highlighted. Downhole composite intervals with grades between 3 and 10 g/t Au are shown in orange, intervals with grades between 10 and 30 g/t Au are shown in red, and intervals over 30 g/t Au are shown in purple. Select high-grade intervals are identified. Grades shown are gold grades in g/t. Underground developments are shown in pale transparent grey to increase visibility of the mineralized intervals.

Grade control drilling is being conducted from underground as well as from near the mine portal and is targeting near surface mineralization scheduled for mining in the next four to sixteen months. It is targeting 5-10 m centers and is designed to provide a detailed understanding of the geometry and mineralization of lode arrays in advance of underground development. Results from the grade control drill program will be used to help optimize mine development and mineral extraction in these areas. The Zone 2 grade control drill program is ongoing. Examples of mineralization observed in the Zone 2 drillholes reported here are shown in Figure 5.

A total of 83 grade control drillholes have been completed to date in the Zone 2 and Zone 5 areas at Tuvatu, including 24 grade control drillholes included in this news release. Previous grade control drill results are available in the news releases dated <u>April 25, 2023</u> and <u>June 14, 2023</u>.

Figure 5. Example Mineralization from Zone 2 Grade Control Drilling. Left: Monzonite-hosted chalcedonic silica veins with abundant coarse grained honey sphalerite rimmed by fine-grained sooty pyrite (TGC-0064, 182.9-183.2 m) Width of core is 4.76 cm. Top center: Banded silica-roscoelite-pyrite vein with visible gold (TGC-0076, 89.7-90.0 m) Width of image is approximately 2 cm. Top right: Fracture face coated with silica, sphalerite, pyrite, and multiple grains of visible gold (TGC-0073, 91.5-91.8 m). Core diameter is 4.76 cm. Bottom right: Monzonite-hosted quartz veinlet with visible gold (TGC-0073, 90.3-90.6 m). Width of image is approximately 3 cm. Bottom center: Monzonite-hosted quartz veinlet with multiple flecks of visible gold (TGC-0083, 56.9-57.2 m). Width of image is approximately 3 cm.

About Tuvatu

The Tuvatu Alkaline Gold Project is located on the island of Viti Levu in Fiji. The January 2018 mineral resource for Tuvatu as disclosed in the technical report "Technical Report and Preliminary Economic Assessment for the Tuvatu Gold Project, Republic of Fiji", dated September 25, 2020, and prepared by Mining Associates Pty Ltd of Brisbane Qld, comprises 1,007,000 tonnes indicated at 8.50 g/t Au (274,600 oz. Au) and 1,325,000 tonnes inferred at 9.0 g/t Au (384,000 oz. Au) at a cut-off grade of 3.0 g/t Au. The technical report is available on the Lion One website at <u>www.liononemetals.com</u> and on the SEDAR website at <u>www.sedarplus.ca</u>.

Qualified Person

In accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43- 101"), Sergio Cattalani, P.Geo, Senior Vice President Exploration, is the Qualified Person for the Company and has reviewed and is responsible for the technical and scientific content of this news release.

QAQC Procedures

Lion One adheres to rigorous QAQC procedures above and beyond basic regulatory guidelines in conducting its sampling, drilling, testing, and analyses. The Company utilizes its own fleet of diamond drill rigs, using PQ, HQ and NQ sized drill core rods. Drill core is logged and split by Lion One personnel on site. Samples are delivered to and analyzed at the Company's geochemical and metallurgical laboratory in Fiji. Duplicates of all samples with grades above 0.5 g/t Au are both re-assayed at Lion One's lab and delivered to ALS Global Laboratories in Australia (ALS) for check assay determinations. All samples for all high-grade intercepts are sent to ALS for check assays. All samples are pulverized to 85% passing through 75 microns. Gold analysis is carried out using fire assay with an AA finish. Samples that have returned grades greater than 10.00 g/t Au are then re-analyzed by gravimetric method. For samples that return greater than 0.50 g/t Au, repeat fire assay runs are carried out and repeated until a result is obtained that is within 10% of the original fire assay run. Lion One's laboratory can also assay for a range of 71 other elements through Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), but currently focuses on a suite of 9 important pathfinder elements. All duplicate anomalous samples are sent to ALS labs in Townsville QLD and are analyzed by the same methods (Au-AA26, and Au-GRA22 where applicable). ALS also analyses 33 pathfinder elements by HF-HNO3-HClO4 acid digestion, HCl leach and ICP-AES (method ME-ICP61).

About Lion One Metals Limited

Lion One's flagship asset is 100% owned, fully permitted high grade Tuvatu Alkaline Gold Project, located on the island of Viti Levu in Fiji. Lion One envisions a low-cost high-grade underground gold mining operation at Tuvatu coupled with exciting exploration upside inside its tenements covering the entire Navilawa Caldera, an underexplored yet highly prospective 7km diameter alkaline gold system. Lion One's CEO Walter Berukoff leads an experienced team of explorers and mine builders and has owned or operated over 20 mines in 7 countries. As the founder and former CEO of Miramar Mines, Northern Orion, and La Mancha Resources, Walter is credited with building over \$3 billion of value for shareholders.

On behalf of the Board of Directors of Lion One Metals Limited "Walter Berukoff", Chairman and CEO

Contact Investor Relations

Toll Free (North America) Tel: 1-855-805-1250 Email: <u>info@liononemetals.com</u> Website: <u>www.liononemetals.com</u>

Neither the TSX Venture Exchange nor its Regulation Service Provider accepts responsibility for the adequacy or accuracy of this release

This press release may contain statements that may be deemed to be "forward-looking statements" within the meaning of applicable Canadian securities legislation. All statements, other than statements of historical fact, included herein are forward-looking information. Generally, forward-looking information may be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "proposed", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases, or by the use of words or phrases which state that certain actions, events or results may, could, would, or might occur or be achieved. This forward-looking information reflects Lion One Metals Limited's current beliefs and is based on information currently available to Lion One Metals Limited to, the actual results of exploration projects being equivalent to or better than estimated results in technical reports, assessment reports, and other geological reports or prior exploration results. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of Lion One Metals Limited or its subsidiaries to be materially different from those expressed or implied by such

forward-looking information. Such risks and other factors may include, but are not limited to: the stage development of Lion One Metals Limited, general business, economic, competitive, political and social uncertainties; the actual results of current research and development or operational activities; competition; uncertainty as to patent applications and intellectual property rights; product liability and lack of insurance; delay or failure to receive board or regulatory approvals; changes in legislation, including environmental legislation, affecting mining, timing and availability of external financing on acceptable terms; not realizing on the potential benefits of technology; conclusions of economic evaluations; and lack of qualified, skilled labour or loss of key individuals. Although Lion One Metals Limited has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking information, there may be other factors that cause results not to be as anticipated, estimated or intended. Accordingly, readers should not place undue reliance on forward-looking information. Lion One Metals Limited does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

Appendix 1: Full Drill Results and Collar Information

Hole ID		From	То	Interval (m)	Au (g/t)
TGC-0053		13.8	17.1	3.3	8.52
TGC-0053	including	13.8	14.7	0.9	6.47
TGC-0053	and	15.3	16.2	0.9	6.43
TGC-0053	and	16.2	17.1	0.9	15.89
TGC-0053		56.4	57.9	1.5	17.73
TGC-0053	including	56.4	57.3	0.9	20.98
TGC-0053	and	57.3	57.9	0.6	12.86
TGC-0053		61.8	62.4	0.6	3.61
TGC-0053		67.5	71.7	4.2	3.87
TGC-0053	including	69	69.6	0.6	5.35
TGC-0053	and	69.6	70.2	0.6	5.89
TGC-0053	and	70.2	70.8	0.6	5.51
TGC-0053	and	71.4	71.7	0.3	5.07
TGC-0053		72.3	75.6	3.3	5.11
TGC-0053	including	72.3	72.6	0.3	5.39
TGC-0053	and	74.4	74.7	0.3	8.54
TGC-0053	and	74.7	75	0.3	7.24
TGC-0053	and	75	75.6	0.6	8.69
TGC-0054		82.8	83.4	0.6	4.92
TGC-0054		90.3	90.6	0.3	7.71
TGC-0055		13.2	13.8	0.6	8.21
TGC-0055		87	87.3	0.3	17.86
TGC-0055		90.9	96.9	6	14.83
TGC-0055	including	90.9	92.7	1.8	12.22
TGC-0055	which includes	90.9	91.5	0.6	10.93
TGC-0055	and	91.5	91.8	0.3	23.82
TGC-0055	and	91.8	92.7	0.9	9.22
TGC-0055	and also including	93.3	93.9	0.6	8.52
TGC-0055	and also including	94.5	96.9	2.4	25.16
TGC-0055	which includes	94.5	95.4	0.9	35.76
TGC-0055	and	95.4	96	0.6	10.87
TGC-0055	and	96	96.3	0.3	30.26
TGC-0055	and	96.3	96.9	0.6	20.98
TGC-0055		108	108.6	0.6	6.17
TGC-0057		11.4	12.6	1.2	3.4
TGC-0057		85.8	86.1	0.3	7.28
TGC-0057		89.4	91.2	1.8	9.22
TGC-0057	including	89.4	89.7	0.3	19.23
TGC-0057	and	89.7	90	0.3	5.34
TGC-0057	and	90	90.6	0.6	7.4
TGC-0057	and	90.6	91.2	0.6	7.98
TGC-0057		113.7	115.2	1.5	10.84

TGC-0057	including	114.3	115.2	0.9	15.86
TGC-0057	y	116.7	118.8	2.1	6.23
TGC-0057	including	116.7	117.6	0.9	8.19
TGC-0057	and	117.9	118.8	0.9	5.42
TGC-0060		76.1	76.4	0.3	25.43
TGC-0062		67.5	69.3	1.8	14.13
TGC-0062	including	67.5	68.1	0.6	5.11
TGC-0062	and	68.1	68.7	0.6	15.29
TGC-0062	and	68.7	69.3	0.6	21.99
TGC-0062		70.5	71.1	0.6	3.47
TGC-0064		182.9	183.5	0.6	33.08
TGC-0064	including	182.9	183.2	0.3	58.29
TGC-0064	and	183.2	183.5	0.3	7.88
TGC-0064		185.3	185.6	0.3	8.07
TGC-0066		163.5	164.1	0.6	8.62
TGC-0066	including	163.5	163.8	0.3	12.85
TGC-0070	mendaning	71.2	71.8	0.6	25.89
TGC-0070		78.4	79	0.6	4.4
TGC-0070		82.9	83.5	0.6	3.94
TGC-0071		95.4	96	0.6	8.24
TGC-0071		114	120	6	19.78
TGC-0071	including	114	114.3	0.3	30.17
TGC-0071	and	114.3	114.9	0.6	8.32
TGC-0071	and	115.5	115.8	0.3	10.68
TGC-0071	and	115.8	116.4	0.6	9.96
TGC-0071	and	113.0	120	3	31.52
TGC-0071	which includes	117	117.6	0.6	33.78
TGC-0071	and	117.6	118.5	0.9	20.88
TGC-0071	and	118.5	119.4	0.9	42.75
TGC-0071	and	119.4	120	0.6	28.35
TGC-0071		157.2	157.8	0.6	5.57
TGC-0072		74.4	75	0.6	4.46
TGC-0073		79.8	81.3	1.5	7.91
TGC-0073	including	79.8	80.4	0.6	10.8
TGC-0073	and	80.4	80.7	0.3	10.95
TGC-0073	0.10	87.9	88.2	0.3	10.85
TGC-0073		90	93.6	3.6	18.08
TGC-0073	including	90	90.3	0.3	8.41
TGC-0073	and	90.3	90.6	0.3	21.79
TGC-0073	and	90.9	92.4	1.5	32.74
TGC-0073	which includes	90.9	91.2	0.3	65.52
TGC-0073	and	91.2	91.5	0.3	38.81
TGC-0073	and	91.5	91.8	0.3	43.67
TGC-0073	and	91.8	92.4	0.6	7.86
TGC-0073	and also including	93	93.6	0.6	6.49

TGC-0073		106.8	107.1	0.3	3.02
TGC-0074		13	13.3	0.3	4.43
TGC-0074		80.8	81.4	0.6	41.5
TGC-0074	including	80.8	81.1	0.3	35.63
TGC-0074	and	81.1	81.4	0.3	47.38
TGC-0074		118.9	120.1	1.2	11.65
TGC-0074	including	118.9	119.2	0.3	10.48
TGC-0074	and	119.2	119.5	0.3	14.96
TGC-0074	and	119.5	119.8	0.3	10.75
TGC-0074	and	119.8	120.1	0.3	10.41
TGC-0076		89.7	90	0.3	7.23
TGC-0076		100.2	101.1	0.9	6.35
TGC-0076	including	100.2	100.5	0.3	6.35
TGC-0076	and	100.5	100.8	0.3	7.25
TGC-0076	and	100.8	101.1	0.3	5.47
TGC-0076		121.8	122.1	0.3	5.04
TGC-0078		14.5	14.8	0.3	18.52
TGC-0078		16.6	17.2	0.6	4.42
TGC-0078		87.7	88.3	0.6	3.93
TGC-0078		91.9	92.5	0.6	20.13
TGC-0078		95.2	97.6	2.4	25.25
TGC-0078	including	95.2	95.5	0.3	149.63
TGC-0078	and	96.1	97.6	1.5	9.28
TGC-0078	which includes	96.1	97	0.9	11.85
TGC-0078	and	97	97.6	0.6	5.43
TGC-0079		102.9	103.5	0.6	5.02
TGC-0080		21	22.2	1.2	11.67
TGC-0080	including	21	21.3	0.3	7.26
TGC-0080	and	21.6	21.9	0.3	35.67
TGC-0080		23.4	24.3	0.9	45.89
TGC-0080		47.4	52.2	4.8	8
TGC-0080	including	47.4	47.7	0.3	5.46
TGC-0080	and	47.7	48	0.3	8.1
TGC-0080	and	48.3	48.6	0.3	18.03
TGC-0080	and	48.6	48.9	0.3	17.95
TGC-0080	and	49.8	50.7	0.9	21.05
TGC-0080	which includes	49.8	50.1	0.3	42.72
TGC-0080	and	50.1	50.4	0.3	15.08
TGC-0080	and	50.4	50.7	0.3	5.35
TGC-0080		53.4	54.3	0.9	9.88
TGC-0082		15.5	16.7	1.2	16.96
TGC-0082	including	16.1	16.7	0.6	29.06
TGC-0082	which includes	16.1	16.4	0.3	34.23
TGC-0082	and	16.4	16.7	0.3	23.89
TGC-0082		46.7	47.6	0.9	3.01

TGC-0082		83	83.3	0.3	3.61
TGC-0083		19.7	20	0.3	10.79
TGC-0083		42.5	45.2	2.7	4.95
TGC-0083	including	42.5	43.1	0.6	5.91
TGC-0083	and	43.7	44	0.3	10.41
TGC-0083	and	44.9	45.2	0.3	12.23
TGC-0083		48.5	49.4	0.9	3.9
TGC-0083		52.4	52.7	0.3	3.42
TGC-0083		55.4	55.7	0.3	4.53
TGC-0083		56.9	57.5	0.6	7.24
TGC-0083	including	56.9	57.2	0.3	10.7
TGC-0083		65	65.6	0.6	25.12
TGC-0083	including	65	65.3	0.3	18.58
TGC-0083	and	65.3	65.6	0.3	31.67
TGC-0083		110.6	110.9	0.3	9.08

Table 3. Composited results from grade control drillholes in the Zone 2 area, 0.5 g/t Au cutoff

Hole ID	<u>v</u>	From	То	Interval (m)	Au (g/t)
TGC-0053		13.8	17.1	3.3	8.52
TGC-0053	including	13.8	14.7	0.9	6.47
TGC-0053	and	15.3	16.2	0.9	6.43
TGC-0053	and	16.2	17.1	0.9	15.89
TGC-0053		21	22.2	1.2	0.62
TGC-0053		55.2	57.9	2.7	9.96
TGC-0053	including	56.4	57.3	0.9	20.98
TGC-0053	and	57.3	57.9	0.6	12.86
TGC-0053		60.3	63.3	3	1.1
TGC-0053		66.9	76.8	9.9	3.71
TGC-0053	including	69	69.6	0.6	5.35
TGC-0053	and	69.6	70.2	0.6	5.89
TGC-0053	and	70.2	70.8	0.6	5.51
TGC-0053	and	71.4	71.7	0.3	5.07
TGC-0053	and	72.3	72.6	0.3	5.39
TGC-0053	and	74.4	74.7	0.3	8.54
TGC-0053	and	74.7	75	0.3	7.24
TGC-0053	and	75	75.6	0.6	8.69
TGC-0053		93.9	96	2.1	1.07
TGC-0053		99	100.2	1.2	1.36
TGC-0054		82.8	83.4	0.6	4.92
TGC-0054		90	90.6	0.6	4.95
TGC-0054	including	90.3	90.6	0.3	7.71
TGC-0054		93.9	94.5	0.6	1.98
TGC-0054		96.3	97.8	1.5	1.17
TGC-0055		13.2	13.8	0.6	8.21

1				1	1
TGC-0055		87	87.3	0.3	17.86
TGC-0055		90.9	96.9	6	14.83
TGC-0055	including	90.9	92.7	1.8	12.22
TGC-0055	which includes	90.9	91.5	0.6	10.93
TGC-0055	and	91.5	91.8	0.3	23.82
TGC-0055	and	91.8	92.7	0.9	9.22
TGC-0055	and also including	93.3	93.9	0.6	8.52
TGC-0055	and also including	94.5	96.9	2.4	25.16
TGC-0055	which includes	94.5	95.4	0.9	35.76
TGC-0055	and	95.4	96	0.6	10.87
TGC-0055	and	96	96.3	0.3	30.26
TGC-0055	and	96.3	96.9	0.6	20.98
TGC-0055		99	100.2	1.2	0.85
TGC-0055		108	108.6	0.6	6.17
TGC-0055		117.9	118.2	0.3	2.13
TGC-0057		11.4	12.6	1.2	3.4
TGC-0057		80.4	82.8	2.4	0.76
TGC-0057		85.8	86.4	0.6	4.25
TGC-0057		87.9	93	5.1	3.66
TGC-0057	including	89.4	91.2	1.8	9.22
TGC-0057	which includes	89.4	89.7	0.3	19.23
TGC-0057	and	89.7	90	0.3	5.34
TGC-0057	and	90	90.6	0.6	7.4
TGC-0057	and	90.6	91.2	0.6	7.98
TGC-0057		106.5	107.4	0.9	0.64
TGC-0057		113.7	118.8	5.1	6.05
TGC-0057	including	114.3	115.2	0.9	15.86
TGC-0057	and	116.7	117.6	0.9	8.19
TGC-0057	and	117.9	118.8	0.9	5.42
TGC-0060		52.4	53	0.6	0.74
TGC-0060		75.5	76.7	1.2	6.97
TGC-0060	including	76.1	76.4	0.3	25.43
TGC-0060		82.4	82.7	0.3	0.65
TGC-0062		67.5	73.8	6.3	4.98
TGC-0062	including	67.5	69.3	1.8	14.13
TGC-0062	which includes	67.5	68.1	0.6	5.11
TGC-0062	and	68.1	68.7	0.6	15.29
TGC-0062	and	68.7	69.3	0.6	21.99
TGC-0064		69	69.6	0.6	1.59
TGC-0064		145.7	146.6	0.9	0.54
TGC-0064		149.9	150.8	0.9	0.51
TGC-0064		167.9	168.8	0.9	2.77
TGC-0064		174.2	174.8	0.6	0.96
TGC-0064		182.9	183.5	0.6	33.08
TGC-0064	including	182.9	183.2	0.3	58.29

TGC-0064	and	183.2	183.5	0.3	7.88
TGC-0064		185.3	185.6	0.3	8.07
TGC-0066		163.5	164.1	0.6	8.62
TGC-0066	including	163.5	163.8	0.3	12.85
TGC-0068		88.9	89.5	0.6	0.92
TGC-0068		98.6	99.2	0.6	0.73
TGC-0068		120.5	121.4	0.9	1.11
TGC-0068		172.4	175.1	2.7	0.83
TGC-0068		186.7	189.4	2.7	0.76
TGC-0068		191.2	192.7	1.5	0.57
TGC-0069		88.4	89	0.6	1.73
TGC-0070		71.2	71.8	0.6	25.89
TGC-0070		73	75.4	2.4	1.03
TGC-0070		78.4	81.1	2.7	2.23
TGC-0070		82.3	84.4	2.1	1.54
TGC-0071		95.4	96	0.6	8.24
TGC-0071		114	120.9	6.9	17.54
TGC-0071	including	114	114.3	0.3	30.17
TGC-0071	and	114.3	114.9	0.6	8.32
TGC-0071	and	115.5	115.8	0.3	10.68
TGC-0071	and	115.8	116.4	0.6	9.96
TGC-0071	and	117	120	3	31.52
TGC-0071	which includes	117	117.6	0.6	33.78
TGC-0071	and	117.6	118.5	0.9	20.88
TGC-0071	and	118.5	119.4	0.9	42.75
TGC-0071	and	119.4	120	0.6	28.35
TGC-0071		155.4	159.6	4.2	2.12
TGC-0071	including	157.2	157.8	0.6	5.57
TGC-0071		160.8	161.4	0.6	2.72
TGC-0071		201.3	202.5	1.2	1.56
TGC-0072		59.7	60.3	0.6	0.84
TGC-0072		74.4	75	0.6	4.46
TGC-0072		81.9	82.5	0.6	0.79
TGC-0072		94.5	95.1	0.6	0.9
TGC-0073		12	12.6	0.6	0.91
TGC-0073		79.8	81.3	1.5	7.91
TGC-0073	including	79.8	80.4	0.6	10.8
TGC-0073	and	80.4	80.7	0.3	10.95
TGC-0073		87.3	94.2	6.9	10.39
TGC-0073	including	87.9	88.2	0.3	10.85
TGC-0073	and	90	90.3	0.3	8.41
TGC-0073	and	90.3	90.6	0.3	21.79
TGC-0073	and	90.9	92.4	1.5	32.74
TGC-0073	which includes	90.9	91.2	0.3	65.52
TGC-0073	and	91.2	91.5	0.3	38.81

TGC-0073	and	91.5	91.8	0.3	43.67
TGC-0073	and	91.8	92.4	0.6	7.86
TGC-0073	and also including	93	93.6	0.6	6.49
TGC-0073		106.2	107.1	0.9	2.32
TGC-0074		12.7	13.3	0.6	2.71
TGC-0074		80.5	81.4	0.9	28.01
TGC-0074	including	80.8	81.4	0.6	41.51
TGC-0074	which includes	80.8	81.1	0.3	35.63
TGC-0074	and	81.1	81.4	0.3	47.38
TGC-0074		92.5	92.8	0.3	0.9
TGC-0074		118.9	120.1	1.2	11.65
TGC-0074	including	118.9	119.2	0.3	10.48
TGC-0074	and	119.2	119.5	0.3	14.96
TGC-0074	and	119.5	119.8	0.3	10.75
TGC-0074	and	119.8	120.1	0.3	10.41
TGC-0075		13.2	14.4	1.2	0.61
TGC-0075		16.2	16.8	0.6	0.6
TGC-0075		27	27.3	0.3	0.53
TGC-0075		43.5	44.4	0.9	0.93
TGC-0076		77.1	78	0.9	0.98
TGC-0076		81	81.3	0.3	1.57
TGC-0076		89.7	90	0.3	7.23
TGC-0076		93.3	93.6	0.3	0.72
TGC-0076		99.3	101.7	2.4	3.59
TGC-0076	including	100.2	100.5	0.3	6.35
TGC-0076	and	100.5	100.8	0.3	7.25
TGC-0076	and	100.8	101.1	0.3	5.47
TGC-0076		121.8	122.1	0.3	5.04
TGC-0077		15	16.5	1.5	0.92
TGC-0077		19.8	20.1	0.3	0.83
TGC-0077		54	54.6	0.6	1.38
TGC-0077		64.2	65.4	1.2	2.53
TGC-0077		72.9	74.4	1.5	1.11
TGC-0078		14.2	14.8	0.6	10.17
TGC-0078	including	14.5	14.8	0.3	18.52
TGC-0078		16	17.2	1.2	3.61
TGC-0078		52	52.6	0.6	1.55
TGC-0078		87.7	89.5	1.8	2.53
TGC-0078		91.9	92.5	0.6	20.13
TGC-0078		95.2	98.2	3	20.44
TGC-0078	including	95.2	95.5	0.3	149.63
TGC-0078	and	96.1	97.6	1.5	9.28
TGC-0078	which includes	96.1	97	0.9	11.85
TGC-0078	and	97	97.6	0.6	5.43
TGC-0079		98.1	98.7	0.6	0.53

TGC-0079		102.9	103.5	0.6	5.02
TGC-0080		21	22.2	1.2	11.67
TGC-0080	including	21	21.3	0.3	7.26
TGC-0080	and	21.6	21.9	0.3	35.67
TGC-0080		23.4	24.3	0.9	45.89
TGC-0080		45.3	55.2	9.9	5.16
TGC-0080	including	47.4	47.7	0.3	5.46
TGC-0080	and	47.7	48	0.3	8.1
TGC-0080	and	48.3	48.6	0.3	18.03
TGC-0080	and	48.6	48.9	0.3	17.95
TGC-0080	and	49.8	50.7	0.9	21.05
TGC-0080	which includes	49.8	50.1	0.3	42.72
TGC-0080	and	50.1	50.4	0.3	15.08
TGC-0080	and	50.4	50.7	0.3	5.35
TGC-0080	and also including	53.4	54.3	0.9	9.88
TGC-0080		70.2	71.4	1.2	0.9
TGC-0080		77.4	80.1	2.7	0.88
TGC-0082		15.5	16.7	1.2	16.96
TGC-0082	including	16.1	16.7	0.6	29.06
TGC-0082	which includes	16.1	16.4	0.3	34.23
TGC-0082	and	16.4	16.7	0.3	23.89
TGC-0082		43.7	45.5	1.8	0.99
TGC-0082		46.7	48.5	1.8	2.2
TGC-0082		49.7	50.6	0.9	0.58
TGC-0082		57.5	58.7	1.2	0.9
TGC-0082		67.7	68.6	0.9	1
TGC-0082		83	83.3	0.3	3.61
TGC-0083		19.4	20.3	0.9	4.12
TGC-0083	including	19.7	20	0.3	10.79
TGC-0083		41	46.4	5.4	3.13
TGC-0083	including	42.5	43.1	0.6	5.91
TGC-0083	and	43.7	44	0.3	10.41
TGC-0083	and	44.9	45.2	0.3	12.23
TGC-0083		48.2	49.4	1.2	3.35
TGC-0083		52.4	52.7	0.3	3.42
TGC-0083		55.4	57.5	2.1	3.04
TGC-0083		56.9	57.2	0.3	10.7
TGC-0083		63.5	65.6	2.1	8.24
TGC-0083	including	65	65.6	0.6	25.13
TGC-0083	which includes	65	65.3	0.3	18.58
TGC-0083	and	65.3	65.6	0.3	31.67
TGC-0083		67.4	69.5	2.1	0.74
TGC-0083		110.6	110.9	0.3	9.08

Table 4. Collar coordinates for grade control holes reported in this release. Coordinates are in Fiji map grid.

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Depth
TGC-0053	1876269	3920756	154	92.1	8.1	116.6
TGC-0054	1876437	3920744	139	296.3	-3.2	104.0
TGC-0055	1876269	3920756	152	96.2	-32.3	134.7
TGC-0057	1876269	3920755	152	116.2	-34.1	134.7
TGC-0060	1876182	3920858	167	130.5	-30.3	92.3
TGC-0062	1876182	3920858	167	114.3	-32.6	101.6
TGC-0063	1876182	3920858	167	114.1	-17.2	70.9
TGC-0064	1876183	3920858	168	103.5	-8.5	230.9
TGC-0066	1876184	3920858	168	103.5	0.1	210.0
TGC-0068	1876182	3920858	167	109.6	-22.1	231.4
TGC-0069	1876182	3920857	168	125.2	0.0	91.4
TGC-0070	1876182	3920858	167	116.6	-41.2	101.9
TGC-0071	1876180	3920857	166	39.4	-51.3	221.3
TGC-0072	1876183	3920859	167	104.3	-31.1	100.5
TGC-0073	1876268	3920756	152	114.4	-33.4	131.4
TGC-0074	1876268	3920757	152	96.5	-39.0	131.5
TGC-0075	1876269	3920756	153	102.2	8.1	106.7
TGC-0076	1876373	3920627	127	340.4	-24.6	137.0
TGC-0077	1876269	3920757	154	93.3	15.3	118.7
TGC-0078	1876268	3920757	154	90.5	-33.2	116.8
TGC-0079	1876373	3920627	128	333.6	-14.5	131.2
TGC-0080	1876269	3920758	152	76.2	-27.4	116.5
TGC-0082	1876269	3920758	152	80.3	-33.2	121.1
TGC-0083	1876268	3920758	152	67.1	-33.0	137.6